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Rodney Baxter in 1999.
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▶ Oxygen atoms regularly arranged, bonds share a hydrogen
which is closer to one of the neighbouring oxygens.

▶ Electronic neutrality condition - each oxygen is near two
hydrogens.
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Ice type models
More generally on an N ×M square lattice:

▶ Take spin σ ∈ S variables for each edge (bond)
▶ To each vertex (atom) we compute a local energy or

Boltzmann weight:

x
τ

σ

τ ′

ρ

u2

u1 = ϵ(u1, u2;σ, ρ; τ, τ
′) = ϵ(x)

▶ Total energy of a configuration Φ is

E (Φ) =
∑
x

ϵ(x)
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e−βE(Φ), β =
1

kBT
.

A huge sum (|S |N·M)... but finite!
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How to compute...?

Define the transfer matrix T (u1, u2), labelled
by pairs σ,ρ ∈ SN :

(T (u1, u2))σ,ρ :=
∑
τ∈SN

N∏
i=1

w(u1, u2;σi , ρi ; τi , τi+1)

where w(u1, u2;σ, ρ; τ, τ
′) = e−βϵ(x).

Then
ZN,M(u1, u2) = Tr(T (u1, u2)

M)
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Yang-Baxter Equation

Now suppose the Boltzmann weights satisfy:∑
ρ′′,σ′′,τ ′′

w(u1, u2; ρ, ρ
′′;σ, σ′′)w(u1, u3; ρ

′′, ρ′; τ, τ ′)w(u2, u3;σ
′′, σ′; τ ′′, τ ′)

=
∑

ρ′′,σ′′,τ ′′

w(u2, u3;σ, σ
′′; τ, τ ′′)w(u1, u3; ρ, ρ

′′; τ ′′, τ ′)w(u1, u2; ρ
′′, ρ′;σ′′, σ′)

Which is the component form of the YBE:

R12(u1, u2)R13(u1, u3)R23(u2, u3) = R23(u2, u3)R13(u1, u3)R12(u1, u2),

in (CS)⊗3. Then we have a commuting family of transfer matrices
(assuming invertibility of R):

[T (u, u′),T (v , u′)] = 0.
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Family of commuting transfer matrices ⇒ simultaneously
diagonalisable! (Well behaved spectrum)

E.g. the 6-vertex model: S = {+1,−1} taking u = u1 − u2,

R(u1, u2) = R(u) = ρ


sinh(h + u) 0 0 0

0 sinh(u) sinh(h) 0
0 sinh(h) sinh(u) 0
0 0 0 sinh(h + u)

 .
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Emergence of Structure...

How to solve YBE... sometimes?

Assume additive dependence R(u1, u2) := R(u1 − u2), and further
assume quasi-classical, i.e.

R(u) = R(u, h) = C (u)(I + r(u)h +O(h2)).

E.g. for 6-vertex model

R(u) := ρ sinh(u)

I + h

 eu+e−u

eu−e−u 0 0 0

0 0 1 0
0 1 0 0

0 0 0 eu+e−u

eu−e−u

+O(h2)


Then r(u) solves the classical YBE:

[r12(u − v), r13(u)] + [r12(u − v), r23(u)] + [r13(u), r23(v)] = 0.
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How to solve YBE... sometimes?

Belavin and Drinfeld classify solutions of CYBE r(u) ∈ g⊗ g in
1982, for g a f.d. simple Lie algebra.

Three classes depending on
Pole structure:

▶ rational

▶ trigonometric

▶ elliptic

Can we pass from solutions of CYBE to solutions of YBE?
Where should such solutions live? First guess: in the Universal
Enveloping Algebra...
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Deformed universal enveloping algebra

Where should such solutions live? First guess: in the Universal
Enveloping Algebra U(g)...

Each solution of the CYBE defines a deformation of the UEA,
Uh(g) which is known as quantum groups.
Uh(g) is an algebra (say with multiplication ∗) over C[[h]], such
that Uh(g)/hUh(g) ≃ U(g) and for x , y ∈ g

x ∗ y − y ∗ x = [x , y ] + h{x , y}r +O(h2).
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Case Study: “Solving” YBE in the quantum group Uq(sln)

Yang-Baxter Equation
The YBE on End(V1 ⊗ V2 ⊗ V3) is

RV1,V2(u1, u2)RV1,V3(u1, u3)RV2,V3(u2, u3)

= RV2,V3(u2, u3)RV1,V3(u1, u3)RV1,V2(u1, u2),

(RVi ,Vj
(ui , uj) invertible).

Additive dependence ⇒ RVi ,Vj
(ui , uj) = RVi ,Vj

(ui − uj)

RV1,V2(u−v)RV1,V3(u)RV2,V3(v)=RV2,V3(v)RV1,V3(u)RV1,V2(u−v).

V3

V2

V1

u − v

u

v

=

V3
V2

V1

u − v

v

u
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Case Study: “Solving” YBE in the quantum group Uq(sln)

Step 1: Symmetry Algebras and Representations

Defining R-Matrix and L-operators
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This requires two matrices:

▶ R12(u) = 1

2

u
∈ End(Cn ⊗ Cn) (an n2 × n2 matrix).

▶ L(u) =
u

∈ End(Cn)⊗A, where A ⊂ End(V). An n × n

matrix with values in A.
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Case Study: “Solving” YBE in the quantum group Uq(sln)

Step 1: Symmetry Algebras and Representations

Defining R-Matrix and Universal L-operators

RLL relation in End (Cn ⊗ Cn ⊗ V):

R12(u − v)L1(u)L2(v) = L2(v)L1(u)R12(u − v).

L1(u) = L(u)⊗ idn, L2(v) = idn ⊗ L(v).

(L1(u)L2(v))ij ,lk = Li ,l(u)Lj ,k(v).

⇒ RLL relation reduces to quadratic algebra relations. Can think
of it as expressing the defining algebra relations for A.

Why YBE for R? This is a consistency condition for associativity
of A.
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Case Study: “Solving” YBE in the quantum group Uq(sln)

Step 1: Symmetry Algebras and Representations

Undeformed Case: sln

The universal enveloping algebra (UEA) A = U(sln) has a defining
R-matrix

R12(u) = u · idn2 + P12 : Cn ⊗ Cn → Cn ⊗ Cn,

where, P12 is the flip P12(x1 ⊗ x2) = x2 ⊗ x1, and a universal
L-operator

L(u) = u · idn ⊗ 1A +
n∑

i ,j=1

eij ⊗ Eji ,

where eij is the matrix unit. Here {Eij} is the Cartan-Weyl basis
for sln:

hi = Eii − Ei+1,i+1,
∑

iEii = 0, Ei ,i+1 = ei , Ei+1,i = fi ,

[Eij ,Ekl ] = δjkEil − δikElj .
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Case Study: “Solving” YBE in the quantum group Uq(sln)

Step 1: Symmetry Algebras and Representations

Differential Representation of sln
For n-parameters ρ ∈ Cn with

∑
i ρi = n(n− 1)/2, we can define a

representation on C[xij | 1 ≤ j < i ≤ n]

by

Eij = (Z D(−ρ)Z−1)ji ,

where

Z =


1
x21 1
x31 x32 1
...

...
. . .

. . .
xn1 xn2 ... xn,n−1 1

, D(−ρ) =


−ρn P21 P31 ... Pn1

−ρn−1 P32 ... Pn2

. . .
. . .

...
−ρ2 Pn,n−1

−ρ1

,

where the Pij are first order linear differential operators:

Pij = −∂ij −
n∑

k=i+1

xki · ∂kj .

[Derkachov and Manashov, 2006]
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Case Study: “Solving” YBE in the quantum group Uq(sln)

Step 1: Symmetry Algebras and Representations

Differential Representation of sln
E.g. n = 2 case: Taking Nx = x∂x and m = ρ2 − ρ1 + 1,

f = −∂x , e = x · (Nx +m), h = 2Nx +m.

General case:
▶ 1 is a lowest weight vector with hi -eigenvalues

mi = ρn+1−i − ρn−i + 1.
▶ For “generic” mi , Vρ is irreducible.
▶ It is reducible if some mi ∈ Z≤0. It contains a finite

dimensional irreducible subrep iff true for all mi .
▶ It has a factorised L-operator!

L(u) = ZD(u)Z−1 =
u

,

u = (ui ), where ui = u − ρi .
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Case Study: “Solving” YBE in the quantum group Uq(sln)

Step 1: Symmetry Algebras and Representations

q-Deformed Case: Uq(sln)

The q-deformed UEA Uq(sln): For some q = eh ∈ C \ {0,±1}

▶ Generators: ei , fi , and invertible ki = qhi for i = 1, 2, . . . , n− 1

▶ Relations:

[ki , kj ] = 0, kiejk
−1
i = qaij ej , ki fjk

−1
i = qaij fi ,

[ei , fj ] = δij
ki − k−1

i

q − q−1
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Case Study: “Solving” YBE in the quantum group Uq(sln)

Step 1: Symmetry Algebras and Representations

q-Deformed Case: Uq(sln)

The q-deformed UEA Uq(sln) has a defining R-matrix

R(u) = quR + q−uR−1 ∈ End(Cn ⊗ Cn),

and a universal L-operator [Jimbo, 1986]

L(u) = quL+ + q−uL− ∈ End(Cn)⊗ Uq(sln),

(L+)ij ∝ Eji for j ≥ i .

Now specialise:

Is there an analogous class of representations for Uq(sln)? How
about a factorised L-operator?
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Case Study: “Solving” YBE in the quantum group Uq(sln)

Step 1: Symmetry Algebras and Representations

q-Difference Representation of Uq(sln)

sln: differential representation ↔ Uq(sln):“q-difference”
representation: Want a representation on C[xij | 1 ≤ j < i ≤ n]
▶ Multiplication operator xij , number operator Nij = xij∂ij .
▶ q-shift operator qαNij : qαNij f (xij) = f (qαxij). In general

qα+
∑

αijNij f (x21, . . . , xn,n−1) = qαf (qα21x21, . . . , q
αn,n−1xn,n−1)

▶ q-difference operator: Dij =
1
xij
[Nij ]q with the action

Dij f (xij) =
f (qxij )−f (q−1xij )

xij (q−q−1)

n = 2 case: Just one variable x21 = x

f = −Dx , e = x [m + Nx ]q, h = 2Nx +m,

0 1 x x2 . . . xn . . .

×0

×m

×[m]q

×(m+2)

×−1

×[m+1]q

×(m+4)

×−[2]q

×[m+2]q

×−[3]q

×[m+n−1]q

×(m+2n)

×−[n]q

×[m+n]q

×−[n+1]q
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Case Study: “Solving” YBE in the quantum group Uq(sln)

Step 1: Symmetry Algebras and Representations

q-Difference Representation of Uq(sln)

▶ For ρ ∈ Cn, there is an analogous representation Vρ of
Uq(sln) [Dobrev, Truini, and Biedenharn, 1994].

▶ Explicit formula? obtained inductively + not unique!

▶ An Explicit formula: mi = ρn−i − ρn+1−i + 1

E
(n)
ii = −ρn+1−i−

∑i−1
j=1 Nij+

∑n
j=i+1(Nji+1) ,

f
(n)
i = −Di+1,iq

∑i−1
j=1

(Nij−Ni+1,j )−
∑i−1

j=1 xijDi+1,jq
∑j−1

k=1
(Nik−Ni+1,k ) ,

e
(n)
i

=
xi+1,i [mi+Ni+1,i+

∑n
j=i+2(Nji−Nj,i+1) ]

q
+q−mi

∑n
j=i+2 xjiDj,i+1q

∑n
k=j (Nk,i+1−Nk,i )

−q
mi+2Ni+1,i

∑i−1
j=1 xi+1,jDijq

∑n
k=i+2(Nki−Nk,i+1)+

∑i−1
k=j+1

(Ni+1,k−Ni,k )
,

[Awata, Noumi, and Odake, 1994]
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j=i+1(Nji+1) ,

f
(n)
i = −Di+1,iq

∑i−1
j=1

(Nij−Ni+1,j )−
∑i−1

j=1 xijDi+1,jq
∑j−1

k=1
(Nik−Ni+1,k ) ,

e
(n)
i

=
xi+1,i [mi+Ni+1,i+

∑n
j=i+2(Nji−Nj,i+1) ]

q
+q−mi

∑n
j=i+2 xjiDj,i+1q

∑n
k=j (Nk,i+1−Nk,i )

−q
mi+2Ni+1,i

∑i−1
j=1 xi+1,jDijq

∑n
k=i+2(Nki−Nk,i+1)+

∑i−1
k=j+1

(Ni+1,k−Ni,k )
,

[Awata, Noumi, and Odake, 1994]
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Case Study: “Solving” YBE in the quantum group Uq(sln)

Step 1: Symmetry Algebras and Representations

Factorised L-operator?

sln: L(u) = ZD(u)Z−1

Z =


1
x21 1
x31 x32 1
...

...
. . .

. . .
xn1 xn2 ... xn,n−1 1

, D(u) =


un P21 P31 ... Pn1

un−1 P32 ... Pn2

. . .
. . .

...
u2 Pn,n−1

u1

,

Uq(sln): Postulate L(u) = Z1(u)D(u)Z2(u)−1

D(u) =


[un]qqb1 P21 ... Pn1

. . .
. . .

...
[u2]qq

bn−1 Pn,n−1

[u1]qqbn

,

Pij = −Dijq
bij−

∑n
k=i+1 xkiDkjq

bijk , Zi (u) =


1

x21q
a
(i)
21 1

...
. . .

. . .

xn1q
a
(i)
n1 ... xn,n−1q

a
(i)
n,n−1 1

,
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YBE and Quantum Groups

Case Study: “Solving” YBE in the quantum group Uq(sln)

Step 1: Symmetry Algebras and Representations

Factorised L-operator?

n=2: Yes [Derkachov, Karakhanyan, and Kirschner, 2007]

L(u1, u2) =
(

1 0
qu1−Nx x 1

)(
[u2]qq−Nx−1 −DxqNx

0 [u1]qqNx

)(
1 0

−qu2−Nx x 1

)
.

n=3: Yes [Valinevich et al., 2008], L(u1, u2, u3) = Z1DZ
−1
2 with

D =

(
[u3]qq−N21+N31 (D21+x32D31qN31−N32−1)qN21+N31 D31qN31

0 [u2]qqN21−N32 D32qu2−N31+N32

0 0 [u1]qqN32+N31

)
,

Z1 =

(
1 0 0

qu2−N31+N32−N21x21 1 0

q−u1−N31+N32x31 qu1−u2−N32x32 1

)
, Z2 =

(
1 0 0

qc21x21 1 0
qc31x31 qc32x32 1

)
,

c21 = u3−N21, c31 = −u3−N31−N21−1, c32 = N21+N31−N32.
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YBE and Quantum Groups

Case Study: “Solving” YBE in the quantum group Uq(sln)

Step 1: Symmetry Algebras and Representations

Factorised L-operator?

n=4:

No... Our ansatz reduces to a large system of linear
equations for the q-shift coefficients (182) which can be shown to
be inconsistent.

“Controlled deformation” breaks - We have “pure quantum
phenomena” in the Cartan-Weyl elements:

E42 = [f3, f2]q = − D42q
N21−N32−N41−1 − x21D41q

−(1+N31)

+(q − q−1)x31D41D32q
N21−N31−1.

A similar term appears in the E24 Cartan-Weyl element.

Such terms cannot arise from our ansatz.
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YBE and Quantum Groups

Case Study: “Solving” YBE in the quantum group Uq(sln)

Step 1: Symmetry Algebras and Representations

Factorised L-operator?

n=4: A modified factorisation L(u) = Z1(u)D(u)Z2(u)−1

Z1 =

(
1

x21qa21 1
x31qa31 x32qa32 1
x41qa41 x42qa42 x43qa43 1

)
7→


1

x21qa21

−(q−q−1)x31D32qa321
1

x31qa31 x32qa32 1
x41qa41 x42qa42 x43qa43 1

,

Z2 =

(
1

x21qc21 1
x31qc31 x32qc32 1
x41qc41 x42qc42 x43qc43 1

)
7→


1

x21qc21 1

x31qc31
x32qc32

−(q−q−1)x21D31qc321
1

x41qc41 x42qc42 x43qc43 1

.
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YBE and Quantum Groups

Case Study: “Solving” YBE in the quantum group Uq(sln)

Step 1: Symmetry Algebras and Representations

Factorised L-operator?

General n: Order of highest term in (q − q−1)

O(L+(u)) ∼



0 0 0 0 0 0 0 0
0 0 1 1 1 1 1

0 0 1 2 2 2
0 0 1 2 3

0 0 1 2
0 0 1

0 0
0


⇒ factorisation involves higher terms in (q − q−1).

Q: Factor L-operator with near diagonal matrices which are only
first order in (q − q−1).
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YBE and Quantum Groups

Case Study: “Solving” YBE in the quantum group Uq(sln)

Step 2: Parameter Permutations and YBE

Parameter Permutations and YBE

For Ř(u) := P ◦ R(u) ∈ End(Vρ ⊗ Vσ)

the defining RLL-relation is

2

1

u − v

u

v

=

2

1

u − v

v

u

∼ Ř(u − v)L1(u)L2(v)
= L1(v)L2(u)Ř(u − v)

.

Ř realises the permutation (u, v) 7→ (v ,u) ∈ Perm(u, v) ≃ S2n.

IDEA: Factorise Ř(u − v) in terms of elementary transposition
operators Si ∈ End(Vρ ⊗ Vσ)

SiL12(u, v) = L12(si (u, v))Si , (L12(u, v) = L1(u)L2(v))

(si (α1, . . . α2n) = (α1, . . . , αi+1, αi , . . . α2n)) for i = 1, . . . , 2n − 1.
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Case Study: “Solving” YBE in the quantum group Uq(sln)

Step 2: Parameter Permutations and YBE

Parameter Permutations and YBE

IDEA: Factorise Ř(u − v) in terms of elementary transposition
operators Si ∈ End(Vρ ⊗ Vσ)

SiL12(u, v) = L12(si (u, v))Si , (L12(u, v) = L1(u)L2(v))

(si (α1, . . . α2n) = (α1, . . . , αi+1, αi , . . . α2n)) for i = 1, . . . , 2n − 1.

Simplification: Can just find n − 1-“intertwining” operators
Ti ∈ End(Vρ):

Ti (u)L1(u) = L1(siu)Ti (u),

and a single “exchange” operator:

Sn(u, v)L12(u, v) = Sn(u, v)L12(u1, . . . , un−1, v1, un, v2, . . . , vn).
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Case Study: “Solving” YBE in the quantum group Uq(sln)

Step 2: Parameter Permutations and YBE

Parameter Permutations and YBE

1. Two different decompositions of (u, v) 7→ (v ,u) into
elementary transpositions gives two candidates for Ř.

2. YBE for Ř:
Ř12(v−w)Ř23(u−w)Ř12(u−v) = Ř23(u−v)Ř12(u−w)Ř23(v−w).

These operators should define an action of S2n, i.e.,

sij . . . si2si1 7→ Sij (sij−1
. . . si1(u, v)) . . . Si2(si1(u, v))Si1(u, v),

respects the group relations.
YBE then follows from equivalence of the decompositions in
Perm(u, v ,w)

(u, v ,w)
Ř127 −→(v ,u,w)

Ř237 −→(v ,w ,u) Ř127 −→(w , v ,u),

(u, v ,w)
Ř237 −→(u,w , v) Ř127 −→(w ,u, v) Ř237 −→(w , v ,u).
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These operators should define an action of S2n, i.e.,

sij . . . si2si1 7→ Sij (sij−1
. . . si1(u, v)) . . . Si2(si1(u, v))Si1(u, v),

respects the group relations.

YBE then follows from equivalence of the decompositions in
Perm(u, v ,w)

(u, v ,w)
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YBE and Quantum Groups

Case Study: “Solving” YBE in the quantum group Uq(sln)
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Literature

Undeformed Case: Treated in [Derkachov and Manashov, 2006].

▶ Intertwining Operators: up to a change of variables

Ti (ui − ui+1) = (−∂ξ)(ui−ui+1).

▶ Exchange Operator: A multiplication operator

Sn(un − v1) = (F (x , y))(un−v1),

where F (x , y) is a polynomial in yij and (xj1 − yj1).

▶ Symmetric Group Relations: Star-Triangle integral identities.

Uq(sl2) Case: [Derkachov, Karakhanyan, and Kirschner, 2007]

Uq(sl3) Case: [Valinevich et al., 2008]
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Case Study: “Solving” YBE in the quantum group Uq(sln)

Step 2: Parameter Permutations and YBE

q-Deformed Case

Proposition

The intertwiners for the Uq(sln) (|q|< 1) L-operator are given by

T (n)
n−i (α) =

(
Λ
(n)
n−i

)α eq2 (q
2(Ni+1,i+1)X (n)

n−i )

eq2 (q
2(Ni+1,i+1−α)X (n)

n−i )
,

eq2(Z ) = ((Z ; q2)∞)−1 =
[
(1− Z )(1− q2Z )(1− q2·2Z ) . . .

]−1
,

eq2 (Z)

eq2 (q
−αZ) =

∑∞
j=0

(q−α;q)j
(q;q)j

Z j , Λ
(n)
n−i = (xi+1,i )

−1qβi

where α = un−i − un+1−i , and

X (n)
n−i = 1 + xi+1,i

∑n
j=i+2

xj,i+1

xji
(qNij − q−Nij )qγi .

Obtained using an approach from [Valinevich et al., 2008].
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Case Study: “Solving” YBE in the quantum group Uq(sln)

Step 2: Parameter Permutations and YBE

q-Deformed Case

Proposition

The intertwiners for the Uq(sln) L-operator, Ti (α), define an
action of the symmetric group Perm(u) ≃ Sn.

Proof.
The only non-trivial relation is the braid relation

Ti (α)Ti+1(α+ β)Ti (β) = Ti+1(β)Ti (α+ β)Ti+1(α).

After a series expansion it is reduced to a family of (terminating)
q-series identity relating rank i + 1 and rank 2i − 1 q-Lauricella
series.
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Case Study: “Solving” YBE in the quantum group Uq(sln)

Step 2: Parameter Permutations and YBE

q-Series Identity

(Type D) q-Lauricella Function: q-Lauricella functions are a family
of multivariable hypergeometric series:

Φ
(n)
D [b; a1, . . . , an; c ; q; x1, . . . , xn]

=
∞∑

m1=0

. . .

∞∑
mn=0

(b; q)M(a1; q)m1 . . . (an; q)mn

(c ; q)M(q; q)m1 . . . (q; q)mn

xm1
1 . . . xmn

n , (⋆)

where M =
∑n

i=1mi and

(x ; q)m = (1− x)(1− qx) . . . (1− qm−1x).

[Andrews, 1972] gives a general transformation formula allowing us
to rewrite (⋆) in terms of a n+1ϕn hypergeometric series.
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Case Study: “Solving” YBE in the quantum group Uq(sln)

Step 2: Parameter Permutations and YBE

q-Series Identity

For n ≥ 1 and non-negative integer tuples

k = (k0, . . . , kn) = (k0, k̃), l = (l1, . . . , ln), m = (m1, . . . ,mn−1),

with K =
∑n

j=0 kj and L,M. Define n-tuples r = (ri ) and p = (pi )

ri = 1 +
∑i

a=1(ka − (la +ma)), pi = 1−
∑n

a=i (ka − (la +ma)).

The identity we need is the equality Θk,l ,m = Ωk,l ,m

Θk,l ,m =
(ξ; q)L+M

(ξ ζ; q)L+M
Φ
(2n−1)
D [ ζ; q−l ,q−m ;q1−L−M/ξ; qr+l+(m,0),q(ri ,r̂n)+m ],

Ωk,l ,m = ζk0
(ξ; q)K
(ξ ζ; q)K

Φ
(n+1)
D [ ζ; q−k ;q1−K/ξ; q1+k0−K/(ξ ζ), qp+k̃ ],

for arbitrary complex parameters ξ, ζ.
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Case Study: “Solving” YBE in the quantum group Uq(sln)

Step 2: Parameter Permutations and YBE

Exchange Operator

The defining relation for the exchange operator Sn is

SnL1(un)L2(v1) = L1(v1)L2(un)Sn.

Recall the (postulated) factorisation for L(u). This can be put into
the form:

L1(u) = Z1(u1)DZ2(un)
−1.

Now we can reduce the defining relation to

Z
(x ,ũ)
2 (v1)

[
(D(x ,ũ))−1 Sn D(x ,ũ)

] (
Z

(x ,ũ)
2 (un)

)−1

= Z
(y ,ṽ)
1 (un)

[
D(y ,ṽ) Sn (D(y ,ṽ))−1

] (
Z

(y ,ṽ)
1 (v1)

)−1
,

if S(x ,y)n commutes (element wise) with Z
(x)
1 and Z

(y)
2 .
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D(y ,ṽ) Sn (D(y ,ṽ))−1
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Recall the (postulated) factorisation for L(u). This can be put into
the form:

L1(u) = Z1(u1)DZ2(un)
−1.

Now we can reduce the defining relation to

Z
(x ,ũ)
2 (v1)

[
(D(x ,ũ))−1 Sn D(x ,ũ)

] (
Z

(x ,ũ)
2 (un)

)−1

= Z
(y ,ṽ)
1 (un)

[
D(y ,ṽ) Sn (D(y ,ṽ))−1

] (
Z

(y ,ṽ)
1 (v1)

)−1
,

if S(x ,y)n commutes (element wise) with Z
(x)
1 and Z

(y)
2 .
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Step 2: Parameter Permutations and YBE

Exchange Operator

This has been used to construct exchange operators in the
undeformed case, and n = 2, and n = 3 cases.

Recall in the n ≥ 4 case the postulated ansatz for the factorisation
was inconsistent - the outer most factors will now have q-difference
terms.

This seems to represent a serious obstruction to constructing the
exchange operator - unclear whether to expect a multiplication
operator (by shifted variables) to work or not
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▶ We introduced the RLL-method as a means for obtaining
solutions to the YBE in the class of differential (q-difference)
representations of sln (Uq(sln)). A key feature here is a
factorisation property of the L-operators.

▶ We explain how the R-matrix can be interpretted as
performing a parameter permutation of the L-operator,
allowing for its factorisation by transposition operators.

▶ We described explicitly all but one of the transposition
operators in the Uq(sln) case, and prove they obey the
necessary symmetric group relations.

▶ We explain how the failure of the factorisation property for
the Uq(sl4) L-operator represents an obstruction to
constructing the missing “exchange” operator.
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