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Motivation

Temperley-Lieb algebras and related diagrammatic algebras are common tools in mathematical

physics, enjoying applications in statistical mechanics, knot theory, low-dimensional topology,

and topological quantum systems [1, 4, 3]. In this work we introduce a combinatorial monoidal

category, which generalises the celebrated Temperley-Lieb category, which includes (as mor-

phisms) diagrams on (once bounded) surfaces with a concrete realisation, considered upto a

“handlesliding equivalence”. This construction grew out of questions related to Skein-modules

of unorientable surfaces [2].

The Temperley-Lieb Category

For a commutative ring R and α ∈ R, the Temperley-Lieb category TL(α) is (for us) a combina-
torial, R-linear, category with

Objects: Non-negative integers, Z≥0.

Morphisms: A morphism n → m is an R-linear combination of “TL-diagrams” of type (n, m):

∈ Hom(3, 3), ∈ Hom(1, 7), D =

(0, 1) (0, 2) . . . (0, 5)

(1, 1) (1, 2) (1, 3)

.

Diagrams are encoded “up to isotopy” by pair partitions of a vertex set, e.g.

D =
{

{(0, 1), (1, 1)}, {(0, 2), (0, 3)}, {(0, 4), (1, 2)}, {(0, 5), (1, 3)}
}

.

Composition: Composition of diagrams is given by “vertical juxtaposition” e.g.

D2 ◦ D1 = ◦ = = α = αD2#D1.

generically, D2 ◦ D1 = αLD1,D2 D2#D1.

Tensor Product: On objects n1 ⊗ n2 = n1 + n2, and on diagrams “horizontal juxtaposition”

D2 ⊗ D = ⊗ =

(0, 1) . . . (0, 4) . . . (0, 8)

(1, 1) . . . (1, 4) . . . (1, 6)

.

Square with Bands Realisation of Surfaces

Our first task is to modify the “square frame” in TL-diagrams to accommodate any surface type

(with boundary) in a tractable way. To do this, we use the disc with bands model for a surface:

Marrying this with the square frame, we obtain:

# = .

PROBLEM: this presentation of a surface is not unique. Below are two equivalent presentations

of the surface above. In general two presentations are related by “handlesliding”.

∼
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∼
(P, s), P = {p1, p2, p3}, s : P → Z2,
p1 = {1, 3}, p2 = {2, 4}, p3 = {5, 6},

s(p1) = s(p3) = 1 s(p2) = 0.

Classification of surfaces: For any surface Σ with boundary, there exist unique g, b ∈ Z≥0 and
t ∈ {0, 1, 2} such that

Σ ∼
(

#t
i=1

)
#

#g
j=1

#
(

#b
k=1

)

Surface Temperley-Lieb Diagrams

We have seen how to modify our square frames for our diagrams. Let us first deal with a source

of ambiguity coming from the “crossings of bands”.

= OR

with this requirement on diagrams, our surface TL diagrams are recorded by a tuple (P, s, f, E),
where (P, s) is the frame, f : P → Z≥0 gives the number of “through lines” for a band, and E is

a catalan state inside the square:
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In this set-up, there are two equivalence moves we impose. The first is our analogue of isotopy:

...

...

...E ′ 7→

...

...

...E ′ ∼

The second, is handleslidingwhich relates diagrams on different frames (but equivalent surfaces):
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Square with Bands Category

For α, β ∈ R, the category SQ(α, β) is:

Objects: Non-negative integers Z≥0.

Morphisms: Morphisms n → m are R-linear combinations of surface TL diagrams type (n, m)
on surfaces with 1-boundary component, considered up to the above equivalences, and we

can remove loops with a factor β if it is twisted and a factor α if it is untwisted e.g:

= β ↓ = β = β

Composition: As in the TL case we have “vertical juxtaposition” Θ2 ◦ Θ1 = αLΘ1,Θ2 Θ2#Θ1, e.g.

Θ2 ◦ Θ1 = ◦

= = α = α2

Tensor Product: We aim to define a tensor product such that n1 ⊗ n2 = n1 + n2 on objects. To
define the tensor product on morphisms we will use a trick. For Θ1 ∈ Hom(n1, m1),
Θ2 ∈ Hom(n2, m2) a tensor product needs to satisfy:

Θ1 ⊗ Θ2 = (Θ1 ⊗ idm2) ◦ (idn1 ⊗ Θ2)
?= (idm1 ⊗ Θ2) ⊗ (Θ1 ⊗ idn2)

Therefore if we can define a notion of a left/right tensor product with the identity diagram we

can define a prospective tensor product where “
?=” becomes a non-trivial consistency

condition. Let

Θ1 = E1

n1. . .

. . .
m1

∈ Hom(n1, m1), Θ2 = E2

n2. . .

. . .
m2

∈ Hom(n2, m2),

then after some thinking, we come to

idn ⊗ Θ2 = E2

n. . .

. . .
n

n2. . .

. . .
m2

Θ1 ⊗ idn = E1

n1. . .
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n. . .

. . .
n

.

Our non-trivial consistency condition looks like the below. It can be proved (difficultly) with an

explicit sequence of handleslides and isotopy moves.
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