Benjamin Morris¹ Joint work with Dionne Ibarra², Gabriel Montoya-Vega³, and Paul Martin¹ (supervisor)

> ¹University of Leeds ²Monash University, Melbourne ³CUNY Graduate Center, NYC

Leeds School of Mathematics PGR Conference, July 2024

¹M.C. Heath, *Hesperia* 27 (1958), pl.22, no. S57

²D. Wolkstein, S.N. Kramer, Inanna, Harper Collins Publisher, 1983

No. S57

Lerna, Greece, Circa 2500-2200BC ¹ Ur, Mesopotamia, Circa 2600-2500BC ²

¹M.C. Heath, *Hesperia* 27 (1958), pl.22, no. S57

²D. Wolkstein, S.N. Kramer, Inanna, Harper Collins Publisher, 1983

Maths to organise drawings

Maths to organise drawings

A Diagram Category for Non-Orientable Surfaces — The Temperley-Lieb category

The Temperley-Lieb Category

The Temperley-Lieb Category

Fix a unital commutative ring R and suppose $\alpha \in R$.

The Temperley-Lieb Category

Fix a unital commutative ring R and suppose $\alpha \in R$. The category $TL(\alpha)$ is an R-linear category defined as follows:


```
The Temperley-Lieb Category
```

Fix a unital commutative ring R and suppose $\alpha \in R$. The category $TL(\alpha)$ is an R-linear category defined as follows:

► Objects: Non-negative integers

The Temperley-Lieb Category

Fix a unital commutative ring R and suppose $\alpha \in R$. The category $TL(\alpha)$ is an R-linear category defined as follows:

- ► Objects: Non-negative integers
- ► Morphisms: Hom(n, m) is {0} if n + m = 1 mod 2, otherwise *R*-linear combinations of type n, m "TL-diagrams",

The Temperley-Lieb Category

Fix a unital commutative ring R and suppose $\alpha \in R$. The category $TL(\alpha)$ is an R-linear category defined as follows:

- ► Objects: Non-negative integers
- Morphisms: Hom(n, m) is {0} if n + m = 1 mod 2, otherwise *R*-linear combinations of type n, m "TL-diagrams", e.g.

└─ The Temperley-Lieb category

Temperley-Lieb Diagrams

A Diagram Category for Non-Orientable Surfaces — The Temperley-Lieb category

Temperley-Lieb Diagrams

What we see:

Temperley-Lieb Diagrams

What we see:

What we mean:

$$\left\{ \{(0,1),(1,1)\},\{(0,2),(0,3)\},\{(0,4),(1,2)\},\{(0,5),(1,3)\} \right\}$$

Temperley-Lieb Diagrams

What we see:

What we mean:

 $\left\{ \{(0,1),(1,1)\},\{(0,2),(0,3)\},\{(0,4),(1,2)\},\{(0,5),(1,3)\} \right\}$

What is a crossing?

Temperley-Lieb Diagrams

What we see:

What we mean:

 $\left\{ \{(0,1),(1,1)\},\{(0,2),(0,3)\},\{(0,4),(1,2)\},\{(0,5),(1,3)\} \right\}$

What is a crossing? Order the vertices AC starting from (0, 1) as the minimum. Then $\{v, v'\}$ crosses $\{u, u'\}$ if $v \prec u \prec v' \prec u'$.

Composition: Hom $(n, m) \times$ Hom $(m, l) \rightarrow$ Hom(n, l) is defined on diagrams by vertically "stacking" $((\phi, \psi) \mapsto \psi \circ \phi)$:

Composition: Hom $(n, m) \times$ Hom $(m, l) \rightarrow$ Hom(n, l) is defined on diagrams by vertically "stacking" $((\phi, \psi) \mapsto \psi \circ \phi)$:

Composition: Hom $(n, m) \times$ Hom $(m, l) \rightarrow$ Hom(n, l) is defined on diagrams by vertically "stacking" $((\phi, \psi) \mapsto \psi \circ \phi)$:

What about

Composition: Hom $(n, m) \times$ Hom $(m, l) \rightarrow$ Hom(n, l) is defined on diagrams by vertically "stacking" $((\phi, \psi) \mapsto \psi \circ \phi)$:

What about

Composition: Hom $(n, m) \times$ Hom $(m, l) \rightarrow$ Hom(n, l) is defined on diagrams by vertically "stacking" $((\phi, \psi) \mapsto \psi \circ \phi)$:

What about

$$D_2 \circ D_1' = \boxed{\bigcirc} \circ \boxed{\bigcirc} = \boxed{\bigcirc} = \alpha \boxed{\bigcirc} = \alpha D_2 \# D_1'$$

Generically $D_2 \circ D_1 = \alpha^{L(D_1,D_2)} D_2 \# D_1$.

 \otimes : Hom $(n_1, m_1) \times$ Hom $(n_2, m_2) \rightarrow$ Hom $(n_1 \otimes n_2, m_1 \otimes m_2)$ is defined on diagrams by **horizontally** "stacking":

 \otimes : Hom $(n_1, m_1) \times$ Hom $(n_2, m_2) \rightarrow$ Hom $(n_1 \otimes n_2, m_1 \otimes m_2)$ is defined on diagrams by **horizontally** "stacking":

 \otimes : Hom $(n_1, m_1) \times$ Hom $(n_2, m_2) \rightarrow$ Hom $(n_1 \otimes n_2, m_1 \otimes m_2)$ is defined on diagrams by **horizontally** "stacking":

where $n_1 \otimes n_2 = n_1 + n_2$.

(Twisted) Chord Diagrams

SWB realisation of surfaces

How to draw TL diagrams on surfaces?

How to draw TL diagrams on surfaces?

TL-diagrams can be drawn on a square frame

SWB realisation of surfaces

How to draw TL diagrams on surfaces?

TL-diagrams can be drawn on a square frame

We would like to draw diagrams on different surfaces.

SWB realisation of surfaces

How to draw TL diagrams on surfaces?

TL-diagrams can be drawn on a square frame

We would like to draw diagrams on different surfaces. Use a "disc with bands" model for surfaces:

(Twisted) Chord Diagrams

SWB realisation of surfaces

How to draw TL diagrams on surfaces?

–(Twisted) Chord Diagrams

SWB realisation of surfaces

How to draw TL diagrams on surfaces?

Marry square frame with this model - "square with bands" (SWB) diagrams:

-(Twisted) Chord Diagrams

SWB realisation of surfaces

How to draw TL diagrams on surfaces?

Marry square frame with this model - "square with bands" (SWB) diagrams:

-(Twisted) Chord Diagrams

└─SWB realisation of surfaces

How to draw TL diagrams on surfaces?

Marry square frame with this model - "square with bands" (SWB) diagrams:

Trade-off: Non-unique way of representing surfaces!

-(Twisted) Chord Diagrams

└─SWB realisation of surfaces

How to draw TL diagrams on surfaces?

Marry square frame with this model - "square with bands" (SWB) diagrams:

<u>Trade-off:</u> Non-unique way of representing surfaces!

(Twisted) Chord Diagrams

SWB realisation of surfaces

Twisted Chord Diagrams
SWB realisation of surfaces

Twisted Chord Diagrams

A twisted chord diagram (TCD) of rank N is a pair (P, s):

└-SWB realisation of surfaces

Twisted Chord Diagrams

A twisted chord diagram (TCD) of rank N is a pair (P, s):

• *P* is a pair partition of the set $\{1, 2, \dots, 2N\}$,

SWB realisation of surfaces

Twisted Chord Diagrams

- A twisted chord diagram (TCD) of rank N is a pair (P, s):
 - P is a pair partition of the set $\{1, 2, \ldots, 2N\}$,

SWB realisation of surfaces

Twisted Chord Diagrams

- A twisted chord diagram (TCD) of rank N is a pair (P, s):
 - P is a pair partition of the set $\{1, 2, \ldots, 2N\}$,

A TCD is **orientable** if $s(P) = \{0\}$.

(Twisted) Chord Diagrams

SWB realisation of surfaces

Twisted Chord Diagrmas

└─SWB realisation of surfaces

Twisted Chord Diagrmas

For two TCD $(P_1, s_1) \in TC_{N_1}$ and $(P_2, s_2) \in TC_{N_2}$, their vertical juxtaposition is a twisted chord diagram of rank $N_1 + N_2$:

SWB realisation of surfaces

Twisted Chord Diagrmas

For two TCD $(P_1, s_1) \in TC_{N_1}$ and $(P_2, s_2) \in TC_{N_2}$, their vertical juxtaposition is a twisted chord diagram of rank $N_1 + N_2$:

└-SWB realisation of surfaces

Twisted Chord Diagrmas

For two TCD $(P_1, s_1) \in TC_{N_1}$ and $(P_2, s_2) \in TC_{N_2}$, their vertical juxtaposition is a twisted chord diagram of rank $N_1 + N_2$:

Small rank "prime" diagrams:

└-SWB realisation of surfaces

Twisted Chord Diagrmas

For two TCD $(P_1, s_1) \in TC_{N_1}$ and $(P_2, s_2) \in TC_{N_2}$, their vertical juxtaposition is a twisted chord diagram of rank $N_1 + N_2$:

Small rank "prime" diagrams:

(Twisted) Chord Diagrams

SWB realisation of surfaces

Chordsliding

SWB realisation of surfaces

Chordsliding

SWB diagrams give non-unique realisation of surfaces...

└─SWB realisation of surfaces

Chordsliding

SWB diagrams give non-unique realisation of surfaces...

Idea: "Slide one end of a band"

SWB diagrams give non-unique realisation of surfaces...

Idea: "Slide one end of a band"

SWB diagrams give non-unique realisation of surfaces...

Idea: "Slide one end of a band"

SWB diagrams give non-unique realisation of surfaces...

Idea: "Slide one end of a band"

View this as a map $h_{(i,\pm 1)} : \mathcal{TC}_N \to \mathcal{TC}_N$, $h_{(i,\pm 1)} : (P, s) \mapsto (\sigma(P), s' \circ \sigma^{-1}), \ \sigma = \sigma_{(i\pm 1, P, s)} \in \operatorname{Sym}_{2N}$.

(Twisted) Chord Diagrams

SWB realisation of surfaces

Chordsliding

Can define an equivalence on \mathcal{TC} by $(P, s) \sim (P', s')$ if (P', s') is obtained from (P, s) by a finite sequence of chordslides.

Can define an equivalence on \mathcal{TC} by $(P, s) \sim (P', s')$ if (P', s') is obtained from (P, s) by a finite sequence of chordslides.

Fact: For any $(P, s) \in \mathcal{TC}_N$, there exist unique integers $g, b \in \mathbb{Z}_{\geq 0}$ and $t \in \{0, 1, 2\}$ such that

Can define an equivalence on \mathcal{TC} by $(P, s) \sim (P', s')$ if (P', s') is obtained from (P, s) by a finite sequence of chordslides.

Fact: For any $(P, s) \in \mathcal{TC}_N$, there exist unique integers $g, b \in \mathbb{Z}_{\geq 0}$ and $t \in \{0, 1, 2\}$ such that

$$(P,s) \sim \left(\#_{i=1}^{t} \stackrel{2}{\xrightarrow{1}}_{1}\right) \# \left(\#_{i=1}^{g} \stackrel{4}{\xrightarrow{2}}_{1}\right) = \left(\#_{i=1}^{b} \stackrel{2}{\xrightarrow{1}}_{1}\right) = \left(\#_{i=1}^{b} \stackrel{2}{\xrightarrow{1}$$

SWB realisation of surfaces

Three Twisted Bands to One

(Twisted) Chord Diagrams

SWB realisation of surfaces

Three Twisted Bands to One

Intersection Matrix

Fact: For any $(P, s) \in \mathcal{TC}_N$, there exist unique integers $g, b \in \mathbb{Z}_{\geq 0}$ and $t \in \{0, 1, 2\}$ such that

$$(P,s) \sim (\#_{i=1}^t \mathsf{M\"ob}) \# (\#_{i=1}^g \mathsf{Tor}) \# (\#_{i=1}^b \mathsf{Ann})$$

Uniqueness? intersection matrix $T(P, s) \in M_{N \times N}(\mathbb{Z}_2)$:

If $(P, s) \sim (P, s')$ then T(P, s) and T(P', s') are related by elementary RC op.s $\Rightarrow b = \text{Null}(T(P, s))$. Let $\mathcal{TC}_N^* = \{(P, s) \in \mathcal{TC}_N \mid T(P, s) \text{ non-singular}\}$. Then $\# : \mathcal{TC}_{N_1}^* \times \mathcal{TC}_{N_2}^* \to \mathcal{TC}_{N_1+N_2}^*$

L The Square with Bands Category

└_SWB diagrams

SWB diagrams

The Square with Bands Category

└_SWB diagrams

SWB diagrams

```
We have the "frames" for our diagrams: (P,s) \in \mathcal{TC}_N^*.
```

The Square with Bands Category

SWB diagrams

SWB diagrams

We have the "frames" for our diagrams: $(P, s) \in \mathcal{TC}_N^*$. How to **unambiguously** encode a diagram on this frame?

— The Square with Bands Category

SWB diagrams

SWB diagrams

We have the "frames" for our diagrams: $(P, s) \in \mathcal{TC}_N^*$. How to **unambiguously** encode a diagram on this frame?

SWB diagrams

UNIVERSITY OF LEEDS

SWB diagrams

We have the "frames" for our diagrams: $(P, s) \in \mathcal{TC}_N^*$. How to **unambiguously** encode a diagram on this frame?

We record (P, s) for the surface,

- The Square with Bands Category

SWB diagrams

SWB diagrams

We have the "frames" for our diagrams: $(P, s) \in \mathcal{TC}_N^*$. How to **unambiguously** encode a diagram on this frame?

We record (P, s) for the surface, and $f : P \to \mathbb{Z}_{\geq 0}$ through lines for each band.

The Square with Bands Category

└─SWB diagrams

SWB diagrams

We have the "frames" for our diagrams: $(P, s) \in \mathcal{TC}_N^*$. How to **unambiguously** encode a diagram on this frame?

We record (P, s) for the surface, and $f : P \to \mathbb{Z}_{\geq 0}$ through lines for each band. Then we just need to record the crossingless pairing inside the square, E.

L The Square with Bands Category

└_SWB diagrams

SWB diagrams

L The Square with Bands Category

└─SWB diagrams

SWB diagrams SWB diagram $\Theta = (P, s, f, E) \in Sq_N(n, m)$,

The Square with Bands Category

SWB diagrams

SWB diagrams SWB diagram $\Theta = (P, s, f, E) \in Sq_N(n, m)$,

The Square with Bands Category

SWB diagrams

SWB diagrams SWB diagram $\Theta = (P, s, f, E) \in Sq_N(n, m)$,

Can organise this as a graph $G(\Theta)$.

— The Square with Bands Category

SWB diagrams

SWB diagrams

Organising SWB diagrams Θ as a graph $G(\Theta)$ means we can describe operations on Θ by its effect on $G(\Theta)$!

The Square with Bands Category

└-SWB diagrams

SWB diagrams

Organising SWB diagrams Θ as a graph $G(\Theta)$ means we can describe operations on Θ by its effect on $G(\Theta)$!

Example: We can "delete components" of $G(\Theta)$

L The Square with Bands Category

└_SWB diagrams

SWB diagrams

The Square with Bands Category

SWB diagrams

SWB diagrams

Given a diagram $\Theta = (P, s, f, E) \in Sq_N(n, m)$ and some connected component $\Gamma \subset G(\Theta)$,

SWB diagrams

SWB diagrams

Given a diagram $\Theta = (P, s, f, E) \in Sq_N(n, m)$ and some connected component $\Gamma \subset G(\Theta)$, define the **twist** $\tau_{\Gamma} \in \mathbb{Z}_2$:

— The Square with Bands Category

SWB diagrams

UNIVERSITY OF LEEDS

SWB diagrams

Given a diagram $\Theta = (P, s, f, E) \in Sq_N(n, m)$ and some connected component $\Gamma \subset G(\Theta)$, define the **twist** $\tau_{\Gamma} \in \mathbb{Z}_2$:

The Square with Bands Category

SWB diagrams - Vertical Juxtaposition

SWB diagrams - Vertical Juxtaposition

The Square with Bands Category

SWB diagrams - Vertical Juxtaposition

SWB diagrams - Vertical Juxtaposition

We want to vertically stack our diagrams:

— The Square with Bands Category

SWB diagrams - Vertical Juxtaposition

SWB diagrams - Vertical Juxtaposition

We want to vertically stack our diagrams:

$$L(\Theta_1,\Theta_2)=1.$$

L The Square with Bands Category

└─SWB diagrams - Isotopy

SWB diagrams - Isotopy

SWB diagrams - Isotopy

SWB diagrams - Isotopy

Unlike the TL-case, there is a non-trivial isotopy move:

SWB diagrams - Isotopy

SWB diagrams - Isotopy

Unlike the TL-case, there is a non-trivial isotopy move:

The Square with Bands Category

SWB diagrams - Isotopy

SWB diagrams - Isotopy

Generically, we can remove "turnbacks" by "pull-throughs"

SWB diagrams - Isotopy

SWB diagrams - Isotopy

Generically, we can remove "turnbacks" by "pull-throughs"

 $(P, s, f, E' \sqcup \{\{(i, j), (i, j+1)\}\}) \mapsto (P, s, f', E'')$

SWB diagrams - Isotopy

SWB diagrams - Isotopy

Generically, we can remove "turnbacks" by "pull-throughs"

 $(P, s, f, E' \sqcup \{\{(i, j), (i, j+1)\}\}) \mapsto (P, s, f', E'')$

Can generate an equivalence relation with this move.

└─SWB diagrams - Isotopy

<u>Fact</u>: If Θ has no internal components, then its isotopy class has a **unique** representative w/o turnbacks!

SWB diagrams - Isotopy

<u>Fact</u>: If Θ has no internal components, then its isotopy class has a **unique** representative w/o turnbacks!

SWB diagrams - Isotopy

<u>Fact</u>: If Θ has no internal components, then its isotopy class has a **unique** representative w/o turnbacks!

SWB diagrams - Handlesliding

SWB diagrams - Handlesliding

We have the "chordsliding" equivalence move on our surfaces:

The Square with Bands Category

SWB diagrams - Handlesliding

SWB diagrams - Handlesliding

We have the "chordsliding" equivalence move on our surfaces:

— The Square with Bands Category

SWB diagrams - Handlesliding

SWB diagrams - Handlesliding

We have the "chordsliding" equivalence move on our surfaces:

Now lets extend this to moves on our diagrams

— The Square with Bands Category

SWB diagrams - Handlesliding

SWB diagrams - Handlesliding

We have the "chordsliding" equivalence move on our surfaces:

Now lets extend this to moves on our diagrams

The Square with Bands Category

└─SWB diagrams - Handlesliding

SWB diagrams - Handlesliding Generically: "Two bands involved"

— The Square with Bands Category

SWB diagrams - Handlesliding

SWB diagrams - Handlesliding Generically: "Two bands involved"

— The Square with Bands Category

SWB diagrams - Handlesliding

SWB diagrams - Handlesliding Generically: "Two bands involved"

 $(P, s, f, E) \mapsto (\sigma(P), s' \circ \sigma^{-1}, f' \circ \sigma^{-1}, E \cup \{\text{``new red arcs''}\})$

27/38

The Square with Bands Category

└─SWB diagrams - Handlesliding

SWB diagrams - Handleslide Equivalence

SWB diagrams - Handlesliding

SWB diagrams - Handleslide Equivalence

On the level of the surface, we can define an equivalence relation by $(P, s) \sim (P', s')$ if (P', s') can be obtained from (P', s') by a finite sequence of chordslides.

SWB diagrams - Handlesliding

SWB diagrams - Handleslide Equivalence

On the level of the surface, we can define an equivalence relation by $(P, s) \sim (P', s')$ if (P', s') can be obtained from (P', s') by a finite sequence of chordslides.

What about on our diagrams? Suppose we define a relation by $\Theta \sim \Theta'$ if Θ' can be obtained from Θ by a finite sequence of handleslides;

SWB diagrams - Handlesliding

SWB diagrams - Handleslide Equivalence

On the level of the surface, we can define an equivalence relation by $(P, s) \sim (P', s')$ if (P', s') can be obtained from (P', s') by a finite sequence of chordslides.

What about on our diagrams? Suppose we define a relation by $\Theta \sim \Theta'$ if Θ' can be obtained from Θ by a finite sequence of handleslides; this only defines an equivalence relation on **isotopy** classes!! - call this Handleslide (HS) Equivalence.

SWB diagrams - Handlesliding

SWB diagrams - Handleslide Equivalence

On the level of the surface, we can define an equivalence relation by $(P, s) \sim (P', s')$ if (P', s') can be obtained from (P', s') by a finite sequence of chordslides.

What about on our diagrams? Suppose we define a relation by $\Theta\sim\Theta'$ if Θ' can be obtained from Θ by a finite sequence of handleslides; this only defines an equivalence relation on **isotopy classes**!! - call this **Handleslide (HS) Equivalence**.

A Diagram Category for Non-Orientable Surfaces - The Square with Bands Category

L The Category $SQ(\alpha, \beta)$

The Category SQ

Let *R* be a unital commutative ring with $\alpha, \beta \in R$.

L The Category $SQ(\alpha, \beta)$

The Category $\mathcal{S}\mathcal{Q}$

Let R be a unital commutative ring with $\alpha, \beta \in R$. The category $SQ(\alpha, \beta)$ is defined as the R-linear category with:

L The Category $SQ(\alpha, \beta)$

The Category $\mathcal{S}\mathcal{Q}$

Let *R* be a unital commutative ring with $\alpha, \beta \in R$. The category $SQ(\alpha, \beta)$ is defined as the *R*-linear category with:

Objects: Non-negative integers

L The Category $SQ(\alpha, \beta)$

The Category \mathcal{SQ}

Let R be a unital commutative ring with $\alpha, \beta \in R$. The category $SQ(\alpha, \beta)$ is defined as the R-linear category with:

Objects: Non-negative integers

Morphisms: Hom(n, m) = {0} if n + m = 1 mod 2, and otherwise it is *R*-linear combinations of HS equivalence classes of SWB diagrams, [Θ]_{HS},

L The Category $SQ(\alpha, \beta)$

The Category \mathcal{SQ}

Let R be a unital commutative ring with $\alpha, \beta \in R$. The category $SQ(\alpha, \beta)$ is defined as the R-linear category with:

- Objects: Non-negative integers
- Morphisms: Hom(n, m) = {0} if n + m = 1 mod 2, and otherwise it is *R*-linear combinations of HS equivalence classes of SWB diagrams, [Θ]_{HS}, Modulo the "delooping" relations:

L The Category $SQ(\alpha, \beta)$

The Category \mathcal{SQ}

Composition: $\operatorname{Hom}(n, m) \times \operatorname{Hom}(m, l) \to \operatorname{Hom}(n, l)$ is given by $\overline{\Theta_2} \circ \overline{\Theta_1} = \alpha^{L(\Theta_1, \Theta_2)} \overline{\Theta_2 \# \Theta_1}$:

The Square with Bands Category

L The Category $SQ(\alpha, \beta)$

The Category $\mathcal{S}\mathcal{Q}$

 $\begin{array}{l} \text{Composition: } \mathsf{Hom}(n,m) \times \mathsf{Hom}(m,l) \to \mathsf{Hom}(n,l) \text{ is given by} \\ \overline{\Theta_2} \circ \overline{\Theta_1} = \alpha^{L(\Theta_1,\Theta_2)} \, \overline{\Theta_2 \# \Theta_1} \text{:} \end{array}$

The Square with Bands Category

L The Category $SQ(\alpha, \beta)$

The Category \mathcal{SQ}

 $\begin{array}{l} \underset{\overline{\Theta_2}}{\mathsf{Composition:}} \operatorname{Hom}(n,m) \times \operatorname{Hom}(m,l) \to \operatorname{Hom}(n,l) \text{ is given by} \\ \overline{\Theta_2} \circ \overline{\Theta_1} = \alpha^{L(\Theta_1,\Theta_2)} \, \overline{\Theta_2 \# \Theta_1} \text{:} \end{array}$

Basic Facts

The Category \mathcal{SQ} - Basic Facts
Basic Facts

The Category \mathcal{SQ} - Basic Facts

<u>Fact 1</u>: For any $\Theta \in Sq(n, m)$, there exist **unique** integers l_u and l_t such that:

$$\overline{\Theta} = \alpha^{l_u} \beta^{l_t} \, \overline{\Theta'} \in \operatorname{Hom}(n, m),$$

where $\Theta' \in Sq(n,m)$ has no loops.

Basic Facts

The Category \mathcal{SQ} - Basic Facts

<u>Fact 1</u>: For any $\Theta \in Sq(n, m)$, there exist **unique** integers l_u and l_t such that:

$$\overline{\Theta} = \alpha^{l_u} \beta^{l_t} \, \overline{\Theta'} \in \operatorname{Hom}(n, m),$$

where $\Theta' \in Sq(n,m)$ has no loops.

Fact 2: Any morphism $\overline{\Theta} \in \text{Hom}(n, m)$ has a factorisation in terms of diagrams of the following form

-Tensor Product

The Category \mathcal{SQ} - Tensor Product

Recall: In the TL case we had a tensor product given by $n_1 \otimes n_2 = n_1 + n_2$ on objects, and on morphisms "horizontal stacking" of diagrams:

-Tensor Product

The Category \mathcal{SQ} - Tensor Product

Recall: In the TL case we had a tensor product given by $n_1 \otimes n_2 = n_1 + n_2$ on objects, and on morphisms "horizontal stacking" of diagrams:

-Tensor Product

The Category \mathcal{SQ} - Tensor Product

Recall: In the TL case we had a tensor product given by $n_1 \otimes n_2 = n_1 + n_2$ on objects, and on morphisms "horizontal stacking" of diagrams:

Can we extend this to a tensor product on \mathcal{SQ} :

-Tensor Product

The Category \mathcal{SQ} - Tensor Product

Recall: In the TL case we had a tensor product given by $n_1 \otimes n_2 = n_1 + n_2$ on objects, and on morphisms "horizontal stacking" of diagrams:

Can we extend this to a tensor product on SQ: On objects $n_1 \otimes n_2 = n_1 + n_2$.

-Tensor Product

The Category \mathcal{SQ} - Tensor Product

Recall: In the TL case we had a tensor product given by $n_1 \otimes n_2 = n_1 + n_2$ on objects, and on morphisms "horizontal stacking" of diagrams:

Can we extend this to a tensor product on SQ: On objects $n_1 \otimes n_2 = n_1 + n_2$. What should $\overline{\Theta} \otimes \overline{\Theta'}$ be for SWB diagrams??

-Tensor Product

The Category \mathcal{SQ} - Tensor Product

Indirect answer: Step 1 - Put the identity diagram on the left:

-Tensor Product

The Category \mathcal{SQ} - Tensor Product

Indirect answer: Step 1 - Put the identity diagram on the left:

-Tensor Product

The Category \mathcal{SQ} - Tensor Product

Indirect answer: Step 2 - Put the identity diagram on the right:

-Tensor Product

The Category SQ - Tensor Product Indirect answer: Step 3 - Insist upon functoriality:

-Tensor Product

The Category SQ - Tensor Product Indirect answer: Step 3 - Insist upon functoriality:

 $\overline{\Theta_1}\otimes\overline{\Theta_2}=\overline{(\mathsf{id}_{m_1}\otimes\Theta_2)}\circ\overline{(\Theta_1\otimes\mathsf{id}_{n_2})}\stackrel{?}{=}\overline{(\Theta_1\otimes\mathsf{id}_{m_2})}\circ\overline{(\mathsf{id}_{n_1}\otimes\Theta_2)}$

-Tensor Product

The Category SQ - Tensor Product Indirect answer: Step 3 - Insist upon functoriality:

 $\overline{\Theta_1} \otimes \overline{\Theta_2} = \overline{(\mathsf{id}_{m_1} \otimes \Theta_2)} \circ \overline{(\Theta_1 \otimes \mathsf{id}_{n_2})} \stackrel{?}{=} \overline{(\Theta_1 \otimes \mathsf{id}_{m_2})} \circ \overline{(\mathsf{id}_{n_1} \otimes \Theta_2)}$

Some directions for future work:

Some directions for future work:

 Construct "finite-dimensional" quotients via the finitising scheme

... Topological invariants?

Some directions for future work:

 Construct "finite-dimensional" quotients via the finitising scheme

... Topological invariants?

Computational questions: algorithms/presentations?

Some directions for future work:

 Construct "finite-dimensional" quotients via the finitising scheme

... Topological invariants?

- Computational questions: algorithms/presentations?
- Compare with a more abstract/geometric construction: connect handlesliding with known presentation of mapping class groups.

A Diagram Category for Non-Orientable Surfaces

Questions?