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A Diagram Category for Non-Orientable Surfaces

The Temperley-Lieb category

The Temperley-Lieb Category

Fix a unital commutative ring R and suppose α ∈ R. The category
TL(α) is an R-linear category defined as follows:

▶ Objects: Non-negative integers

▶ Morphisms: Hom(n,m) is {0} if n +m = 1 mod 2,
otherwise R-linear combinations of type n,m “TL-diagrams”,
e.g.

∈ Hom(3, 3), ∈ Hom(1, 7).
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The Temperley-Lieb category

Temperley-Lieb Diagrams

What we see:

(0,1) (0,2) . . . (0,5)

(1,1) (1,2) (1,3)

What we mean:{
{(0, 1), (1, 1)}, {(0, 2), (0, 3)}, {(0, 4), (1, 2)}, {(0, 5), (1, 3)}

}
What is a crossing? Order the vertices AC starting from (0, 1) as
the minimum. Then {v , v ′} crosses {u, u′} if v ≺ u ≺ v ′ ≺ u′.
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The Temperley-Lieb category

Temperley-Lieb Diagrams: Composition

Composition: Hom(n,m)× Hom(m, l)→ Hom(n, l) is defined on
diagrams by vertically “stacking” ((ϕ, ψ) 7→ ψ ◦ ϕ):

D2 ◦ D1 = ◦ = = = D2#D1.

What about

D2 ◦ D ′
1 = ◦ = = α = αD2#D ′

1

Generically D2 ◦ D1 = αL(D1,D2)D2#D1.
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The Temperley-Lieb category

Temperley-Lieb Diagrams: Tensor Product

⊗ : Hom(n1,m1)× Hom(n2,m2)→ Hom(n1 ⊗ n2,m1 ⊗m2) is
defined on diagrams by horizontally “stacking”:

D2 ⊗ D1 = ⊗

=

(0, 1) . . . (0, 4) . . . (0, 8)

(1, 1) . . . (1, 4) . . . (1, 6)

where n1 ⊗ n2 = n1 + n2.
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(Twisted) Chord Diagrams

SWB realisation of surfaces

How to draw TL diagrams on surfaces?

TL-diagrams can be drawn on a square frame

We would like to draw diagrams on different surfaces. Use a “disc
with bands” model for surfaces:
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SWB realisation of surfaces

How to draw TL diagrams on surfaces?

Marry square frame with this model - “square with bands” (SWB)
diagrams:

Trade-off: Non-unique way of representing surfaces!
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SWB realisation of surfaces

Twisted Chord Diagrams

A twisted chord diagram (TCD) of rank N is a pair (P, s):

▶ P is a pair partition of the set {1, 2, . . . , 2N},
▶ s is a Z2 labelling s : P → Z2.

1

3

02

4

0

5

6
1

∼ ,

1

4

0
2

5

0
3

6

0 ∼

A TCD is orientable if s(P) = {0}.
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(Twisted) Chord Diagrams

SWB realisation of surfaces

Twisted Chord Diagrmas

For two TCD (P1, s1) ∈ T CN1 and (P2, s2) ∈ T CN2 , their vertical
juxtaposition is a twisted chord diagram of rank N1 + N2:

1

2
1#

1

3

02

4

0 =

1

3

02

4

0

5

6
1

Small rank “prime” diagrams:

1

2
1 ∼ ,

1

3

02

4

0 ∼ ,
1

2
0 ∼
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(Twisted) Chord Diagrams

SWB realisation of surfaces

Chordsliding

SWB diagrams give non-unique realisation of surfaces...

Idea: “Slide one end of a band”

↑ 7→

↓ 7→

View this as a map h(i ,±1) : T CN → T CN ,
h(i ,±1) : (P, s) 7→

(
σ(P), s ′ ◦ σ−1

)
, σ = σ(i±1,P,s) ∈ Sym2N .
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(Twisted) Chord Diagrams

SWB realisation of surfaces

Chordsliding

Can define an equivalence on T C by (P, s) ∼ (P ′, s ′) if (P ′, s ′) is
obtained from (P, s) by a finite sequence of chordslides.

Fact: For any (P, s) ∈ T CN , there exist unique integers
g , b ∈ Z≥0 and t ∈ {0, 1, 2} such that

(P, s) ∼
(
#t

i=1
1

2
1

)
#

#g
i=1

1

3

02

4

0

#

(
#b

i=1
1

2
0

)
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(Twisted) Chord Diagrams

SWB realisation of surfaces

Intersection Matrix
Fact: For any (P, s) ∈ T CN , there exist unique integers
g , b ∈ Z≥0 and t ∈ {0, 1, 2} such that

(P, s) ∼ (#t
i=1Möb)#(#g

i=1Tor)#(#b
i=1Ann)

Uniqueness? intersection matrix T (P, s) ∈ MN×N(Z2):

1

3

02

4

0

5

6
1

7→

0 1 0
1 0 0
0 0 1


If (P, s) ∼ (P, s ′) then T (P, s) and T (P ′, s ′) are related by
elementary RC op.s ⇒ b = Null(T (P, s)).
Let T C∗N = {(P, s) ∈ T CN | T (P, s) non-singular}. Then
# : T C∗N1

× T C∗N2
→ T C∗N1+N2
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SWB diagrams

SWB diagrams

We have the “frames” for our diagrams: (P, s) ∈ T C∗N . How to
unambiguously encode a diagram on this frame?

vs.

We record (P, s) for the surface, and f : P → Z≥0 through lines
for each band. Then we just need to record the crossingless pairing
inside the square, E .
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E

n...
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f1

f2

f3

...

...

...E

...

...

...E
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SWB diagrams
SWB diagram Θ = (P, s, f ,E ) ∈ SqN(n,m),

E

n...

m...

f1

f2

f3

(0,1) (0,n)
(1,1)

(1,f1)

(2,1)

(2,f2)

...

...

(6,1)

(6,f3)
(7,1) (7,m)

...

...

...E

...

...

...E

Can organise this as a graph G (Θ).
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SWB diagrams

Organising SWB diagrams Θ as a graph G (Θ) means we can
describe operations on Θ by its effect on G (Θ)!

Example: We can “delete components” of G (Θ)

7→ or
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SWB diagrams

Given a diagram Θ = (P, s, f ,E ) ∈ SqN(n,m) and some connected
component Γ ⊂ G (Θ), define the twist τΓ ∈ Z2:

τ = 1,
τ = 0,
τ = 0.
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SWB diagrams - Vertical Juxtaposition

We want to vertically stack our diagrams:

Θ2#Θ1 = #

= =

L(Θ1,Θ2) = 1.
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SWB diagrams - Isotopy
Generically, we can remove“turnbacks” by “pull-throughs”

...

...

...E ′

(i, j)

J(i,j)7→

...

...

...E ′

(P, s, f ,E ′ ⊔ {{(i , j), (i , j + 1)}}) 7→ (P, s, f ′,E ′′)

Can generate an equivalence relation with this move.
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SWB diagrams - Isotopy

Fact: If Θ has no internal components, then its isotopy class has a
unique representative w/o turnbacks!
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Now lets extend this to moves on our diagrams
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SWB diagrams - Handlesliding
Generically: “Two bands involved”

...

...

...

...
E

σ(i′)

σ(i)

σ(i + ϵ)

sq=1← [

...

...

...

...

E

sq

i

i′

i + ϵ↑
sq=07→

...

...

...

...
E

σ(i)

σ(i′)

σ(i + ϵ)

(P, s, f ,E ) 7→ (σ(P), s ′ ◦ σ−1, f ′ ◦ σ−1,E ∪ {“new red arcs”})
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On the level of the surface, we can define an equivalence relation
by (P, s) ∼ (P ′, s ′) if (P ′, s ′) can be obtained from (P ′, s ′) by a
finite sequence of chordslides.

What about on our diagrams? Suppose we define a relation by
Θ ∼ Θ′ if Θ′ can be obtained from Θ by a finite sequence of
handleslides; this only defines an equivalence relation on isotopy
classes!! - call this Handleslide (HS) Equivalence.

↑ 7→ 7→
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The Category SQ
Let R be a unital commutative ring with α, β ∈ R.

The category
SQ(α, β) is defined as the R-linear category with:
▶ Objects: Non-negative integers
▶ Morphisms: Hom(n,m) = {0} if n +m = 1 mod 2, and

otherwise it is R-linear combinations of HS equivalence classes
of SWB diagrams, [Θ]HS, Modulo the “delooping” relations:

= β

= α
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Composition: Hom(n,m)× Hom(m, l)→ Hom(n, l) is given by
Θ2 ◦Θ1 = αL(Θ1,Θ2)Θ2#Θ1:

Θ2 ◦Θ1 = ◦

= = α
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The Category SQ - Basic Facts

Fact 1: For any Θ ∈ Sq(n,m), there exist unique integers lu and
lt such that:

Θ = αluβlt Θ′ ∈ Hom(n,m),

where Θ′ ∈ Sq(n,m) has no loops.

Fact 2: Any morphism Θ ∈ Hom(n,m) has a factorisation in
terms of diagrams of the following form

E

. . .

. . .

f1

f2
E

f

. . .

. . .

. . .

. . .

E
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The Category SQ - Tensor Product

Recall: In the TL case we had a tensor product given by
n1 ⊗ n2 = n1 + n2 on objects, and on morphisms “horizontal
stacking” of diagrams:

⊗ =

(0, 1) . . . (0, 4) . . . (0, 8)

(1, 1) . . . (1, 4) . . . (1, 6)

Can we extend this to a tensor product on SQ: On objects
n1 ⊗ n2 = n1 + n2. What should Θ⊗Θ′ be for SWB diagrams??
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Indirect answer: Step 1 - Put the identity diagram on the left:

Θ2 = E2

n2...

...
m2

7→ E2

n...

...
n

n2...

...
m2

:= idn ⊗Θ2
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Outlook

Some directions for future work:

▶ Construct “finite-dimensional” quotients via the finitising
scheme

SQ ?

Ker SQ+ T

/Ker

F ≃ /Ker

... Topological invariants?

▶ Computational questions: algorithms/presentations?

▶ Compare with a more abstract/geometric construction:
connect handlesliding with known presentation of mapping
class groups.
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THANK YOU

Questions?
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