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Abstract

In this report we study the six-vertex model and its higher spin generalisations. We show how Baxter’s
Q-operator approach allows for the spectrum of the transfer matrix to be found for the standard case and
for the higher spin generalisation. We examine two particular constructions of such Q-operators from [7]
and [8] as well as the relationship between the two constructions. We also introduce a method, based on
this relationship, of constructing the operator from [7] using a composite local L-operator in the hope of
finding a particular limit of this operator, although this approach has not been fully developed yet.

1 Introduction

In this report we study the basics of integrable systems with a particular focus on the six-vertex model
and its higher spin generalisations. Although a precise definition of integrability in a system does not exist
Hitchin suggests three common features of integrable systems are the existence of a large number of conserved
quantities, explicitly forms for solutions, and the presence of algebraic geometry [1].

The six vertex model is a famous lattice model introduced as an analogue for hydrogen bonding in ice
by Pauling in 1935 [2]. It was solved for three specific cases by Lieb in 1967 using a Bethe Ansatz and then
more generally by Sutherland in the same year [3,4]. The model is a square lattice model with M rows and
N columns. It has toroidal boundary conditions meaning that the (N + k)th site on any row is the same
as the kth site and the (M + l)th site on any column is the same as the lth site. It is obviously then most
convenient to take 1 ≤ k ≤ N and 1 ≤ l ≤M .

At each vertex we imagine an oxygen atom and between any two adjacent atoms is a hydrogen ion which
is closer to one of the atoms. This can be neatly represented by arrows; an arrow pointing towards a vertex
represents a ion closer to that atom. Slater proposed that ions should satisfy the ice rule meaning each atom
has exactly two ions closer to it than to adjacent atoms and two ions closer to adjacent atoms [5]. This gives
rise to six possible arrangements at each vertex which are shown below in arrow form.

Figure 1: Vertex Arrangements

In the most general form each possible arrangement has its own distinct energy εi (i = 1, . . . , 6). We
then form the partition function as

Z =
∑
s

e−(n1ε1+···+n6ε6)/kBT , (1.1)

where the sum is over all possible arrangements of vertices in the lattice, s, and ni is the number of vertices of
type i = 1, . . . , 6 in an arrangemen, s t. Three particular cases of interest are the ice model where the energy
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of each lattice is independent of its arrangement so we choose ε1 = · · · = ε6 = 0 for simplicity, the ferroelectric
model where we choose ε1 = ε2 = 0, ε3 = · · · = ε6 > 0 hence the ground state consists of vertices which are
all in state 1 or all in state 2, and the anti-ferroelectric model where we choose ε1 = · · · = ε4 > 0, ε5 = ε6 = 0
hence the ground state consists of vertices in state 5 and 6 in an alternating pattern. For the remainder of
this section we will use ε1 = ε2, ε3 = ε4, ε5 = ε6 as this implies reversing all arrows does not change the
system as expected in the absence of an external field.

We now introduce an alternate representation of a vertex. Each arrow is replaced with a binary value or
spin, i(j) = 0 if a vertical (horizontal) arrow points down (right) and i(j) = 1 if it points up (left). This will
make the connection to the XXZ spin chain clearer and so too its arbitrary spin generalisation. Then an
arbitrary row-row transition of the lattice can be described by two sets of vertical spins i = {i1, . . . , iN} and
i′ = {i′1, . . . , i′N} and one set of horizontal spins j = {j1, . . . , jN} (figure 2 shows the kth site in some row).
We now see that the ice rule proposed by Slater is equivalent to the conservation rule

Figure 2: Vertex with Spin Representation

ik + jk = i′k + jk+1. (1.2)

Summing (1.2) over k we arrive at the conservation of spin for each row of the lattice

N∑
k=1

ik =

N∑
k=1

i′k := l. (1.3)

It is also worth noting that (1.2) also reveals that for given i and i′, j is uniquely determined by j1.
The partition function (1.1) can now be reformulated as

Z = Tr
(
TM

)
, (1.4)

where T is the transfer matrix which describes the transfer between two row states defined as

Ti,i′ =
∑
j

e−(m1ε1+···+m6ε6)/kBT , (1.5)

where mi is the number of vertices in state i in the row-row transition described by the sets i, i′ and j. This
is a 2N × 2N matrix since there 2N choices of i and i′. If T can be diagonalised then (1.4) reduces to the
following simple expression

Z =

2N∑
i=1

λMi , (1.6)

where λi are the eigenvalues of T. Futhermore, in the thermodynamic limit M →∞ the largest eigenvalue
dominates the sum (1.6) hence Z ∼ λMmax.

In section 2 we will introduce a more generalised version of the six vertex model with arbitrary spin I ∈ C,
and show how its spectrum can be solved using a Q-operator which obeys a TQ relation. This approach was
first introduced by Baxter in his original solution of the 8-vertex model [6]. In section 3 we examine two
parallel constructions of Q-operators and the connection between them.

Before section 2 we will briefly recall some facts about the Uq(sl(2)) algebra. It is defined by the generators
E,F and H which obey the relations

qHEq−H = q2E, qHFq−H = q−2F, [E,F ] =
[qH ]

[q]
, (1.7)
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where we use the notation
[x] = x− x−1. (1.8)

For any I ∈ C we can introduce an infinite-dimensional Verma module V +
I with basis vi, i ∈ Z+. Then

Uq(sl(2)) has an infinite dimensional representation π+
I : Uq(sl(2)) → End(V +

I ) defined by the following
action

Hvi = (I − 2i)vi, Evi =
[qi]

[q]
vi−1, Fvi =

[qI−i]

[q]
vi+1. (1.9)

Note above we write E,F and H instead of π+
I (E), π+

I (F ) and π+
I (H) for convenience.

2 Arbitrary spin generalisation of six-vertex model

In this section we introduce the arbitrary spin generalisation of the six vertex model or XXZ spin chain taken
from [7]. For some I ∈ C we construct the Uq(sl(2)) L-operator acting in the tensor product C2 ⊗ V +

I as

L(λ;φ) =

(
φ−1[λqH/2] φ−1[q]F
φ[q]E φ[λq−H/2]

)
, (2.1)

where E,F and H are as per (1.7) and (1.9). λ is a spectral parameter and φ is the horizontal field. In the case
I ∈ Z+ the representation π+

I is reducible. One can introduce a finite dimensional module VI ∼= V +
I /V

+
−I−2

with the basis {v0, . . . , vI}. The corresponding finite dimensional representation is denoted as πI .
In the case I ∈ C we can now define the tranfer matrix TI(λ;φ) with periodic boundary conditions acting

in the (I + 1)N dimensional quantum space W =
⊗N

i=1 VI as

TI(λ;φ) = Tr (L1(λ;φ)⊗ · · · ⊗ LN (λ, φ)) , (2.2)

where the Trace is taken over the auxiliary space C2. The conservation law (1.3) still holds in the quantum
space W except now ik, i

′
k ∈ Z+ are not restricted to binary values instead ik, i

′
k = 0, . . . , I. This means

only row states with the same total spin can interact with each other hence the transfer matrix (2.2) has
block-diagonal form

TI(λ;φ) =

IN⊕
l=0

T
(l)
I (λ;φ). (2.3)

We will call the subspace of W with a fixed l the lth sector and denote it Wl. Each T
(l)
I in (2.3) is a matrix

acting invariantly in the subspace Wl.
We now notice that the form (2.3) is preserved for arbitrary complex spin I ∈ C except that now our

quantum space is infinite dimensional, W =
⊗N

i=1 V
+
I . The direct sum in (2.3) now runs from 0 to infinity,

however, for a fixed l the block T
(l)
I acting in the lth sector is still finite dimensional.

We now briefly return to the standard six-vertex model to motivate the introduction of Baxter’s Q-
operators [6]. We introduce the following Boltzmann weights for convenience

a := e−ε1/kBT = e−ε2/kBT , b := e−ε3/kBT = e−ε4/kBT , c = e−ε5/kBT = e−ε6/kBT . (2.4)

Now we parametrise the variables a, b and c by entire functions in new variables ρ, µ and v

a, b, c = ρ sinh
1

2
(µ− v), ρ sinh

1

2
(µ+ v), ρ sinhµ. (2.5)

Baxter showed that if we regard ρ and µ as constants then elements of the transfer matrix (1.5) are entire
functions of v and that two transfer matrices commute for different u, v ∈ C

[T(v),T(u)] = 0. (2.6)

Baxter also showed that there was a Q-operator with matrix elements entire in v ∈ C which satisfied the
following commutation relations for any v, u ∈ C

[Q(v),Q(u)] = [T(v),Q(u)] = 0, (2.7)
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and the famous TQ-relation

T(v)Q(v) = φ(µ− v)Q(v + 2µ′) + φ(µ+ v)Q(v − 2µ′), (2.8)

where
φ(v) = ρN sinhN (v/2), µ′ = µ− iπ. (2.9)

From (2.7), the left and right hand sides of (2.8) can be simultaneously diagonalised giving the following
defining relation for the eigenfunctions Λ(v) of T(v)

Λ(v) =
φ(µ− v)q(v + 2µ′) + φ(µ+ v)q(v − 2µ′)

q(v)
, (2.10)

where the eigenfunctions for, q(v) of Q(v) are of the form

q(v) =

l∏
k=1

sinh
1

2
(v − vk), (2.11)

for unknowns v1, . . . , vl and some fixed l as per (1.3). However, since Λ(v) must be an entire function of v
the numerator and denominator of (2.10) must both vanish at v = vi thus giving l the followings equations
for v1, . . . , vl

φ(µ− vi)
φ(µ+ vi)

= −q(vi − 2µ′)

q(vi + 2µ′)
, for i = 1, . . . , l. (2.12)

We now continue this Q-operator approach for the XXZ spin chain at arbitrary spin I ∈ C. Mangazeev
has constructed two operators Q(I)(λ) [7,8] which satisfy the follow the following commutation relations for
arbitrary λ, λ′ ∈ C

[Q(I)(λ),TI(λ
′;φ)] = [Q(I)(λ),Q(I)(λ′)] = 0, (2.13)

and satisfy the TQ-relation in a different form

TI(λ;φ)Q(I)(λ) = φN [λ/ζ]NQ(I)(qλ) + φ−N [λζ]NQ(I)(q−1λ), (2.14)

where we introduce the following variable for convenience

ζ = qI/2. (2.15)

As before (2.13) and (2.14) are enough to define a scalar relation for the eigenfunctions of TI(λ;φ) which
we will denote ΛI(λ;φ)

ΛI(λ;φ) =
φN [λ/ζ]NQ(I)(qλ) + φ−N [λζ]NQ(I)(q−1λ)

Q(I)(λ)
, (2.16)

where for arbitrary φ 6= 1 the eigenfunctions Q(I)(λ) of Q(I) in the lth sector are now of the form

Q(I)(λ) =
A

λl

l∏
k=1

(λ2 − λ2k) (2.17)

for any constant A and unknowns λ1, . . . , λl. We now use the same argument as before to deduce that the
numerator of (2.15) vanishes for λ = ±λk giving the following 2l equations for λ1, . . . , λl

φ2N
[±λi/ζ]N

[±λiζ]N
= −Q

(I)(±λi/q)
Q(I)(±λiq)

, for i = 1, . . . , l. (2.18)

This is sufficient to define the eigenfunctions (2.16).
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3 Construction of Q-Operators

In this section we introduce two parrallel construction of Q-operators which satisfy the relation (2.14). In
3.1 we introduce a Q-operator constructed as transfer matrices acting in the lth sector using the q-oscillator
algebra and in 3.2 we introduce a Q-operator constructed as an integral operator acting on a space of
polynomials.

3.1 q-oscillator construction

The construction of the operators A
(I)
± (λ) comes from [7]. They are constructed as transfer matrices acting

in the subspace Wl

A
(I)
± (λ) = (1− φ2Nq2l−IN )× Tr

Fq

(
A

(I)
± (λ)1 ⊗ · · · ⊗A(I)

± (λ)N

)
. (3.1)

Here the trace is taken over the auxiliary infinite dimensional Fock space Fq, spanned by {|n〉 | n = 0, 1, . . . }.
The result (3.1) is in general a geometric series in φ and q which in general we cannot expect to converge.
However, for appropriate φ ∈ C it can be made to converge and then analytically continued for all values of
φ.

The local operators A
(I)
± (λ) act in the tensor product Fq ⊗ VI and have the form[

A
(I)
+ (λ)

]n′,i′

n,i
= δi+n′,i′+nφ

−2n(−1)i+i
′
λ−iq

1
2 i(i+1)− 1

2 i
′(i′+1)+i(I+i′)+n(I−i−i′)×

× (q2; q2)n′

(q2; q2)n(q2; q2)i
3φ2

(
q−2i; q−2i, λ2q−I

q−2I , q2(1+n−i) q2, q2

)
, (3.2)

and [
A

(I)
− (λ)

]n′,i′

n,i
= δi+n,i′+n′φ2nλi−Iq−

1
2 i(i−1)+

1
2 i

′(i′−1)+i(I+i′)+n(I−i−i′)×

× (λ2q−I+2(i′−n); q2)I−i−i′

(q2; q2)i
3φ2

(
q−2i; q−2i, λ2q−I

q−2I , q2(1+n−i
′) q2, q2

)
, (3.3)

where we define the q-Pochammer symbol

(x; q)n =

n−1∏
k=0

(1− xqk), (3.4)

and a regularized terminating basic hypergeometric series r+1φr as

r+1φr

(
q−n; a1, . . . , ar
b1, . . . , br q, z

)
=

n∑
k=0

zk
(q−n; q)k

(q; q)k

r∏
s=1

(as, q)k(bsq
k; q)n−k. (3.5)

The δ-functions included in definitions (3.2) and (3.3) ensure that the that both Q-operators act invari-
antly within the subspaces Wl just as the transfer matrix TI(λ;φ) (2.2) does.

Q-operators A
(I)
± (λ) constructed this way obey the followng TQ relation

TI(λ;φ)A
(I)
± (λ) = φ±N [λ/ζ]NA

(I)
± (qλ) + φ∓N [λζ]NA

(I)
± (q−1λ), (3.6)

as well as the commutation relations (2.13). In particular this means that the operator A
(I)
+ (λ) satisfies

the TQ-relation as per (2.14). For this reason we will mostly be concerned with the operator A
(I)
+ (λ). The

normlization factor in (3.1) means that it has the following asymptotic behaviour as λ→∞

A
(I)
+ (λ)|λ→∞ = −(−λ)lφ2Nql−IM (I +O(λ−2)). (3.7)
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Another interesting case is when the spectral parameter takes the value λ = ζ. In this case only the
k = 0 term from the series 3φ2 is non-zero and equation (3.2) simplifies greatly to

[A
(I)
+ (ζ)]n

′,i′

n,i = δi+n′,i′+n(−1)i
′
qii

′+ 1
2 i(I+3−i)− 1

2 i
′(i′+1) (ζ−4; q2)i

(q2; q2)i
×

× (q2; q2)n′

(q2; q2)n
φ−2nqn(I+i−i

′)(q−2n; q2)i. (3.8)

In [7] A
(I)
+ (ζ) was evaluated in closed form for the subspace Wl using the local operator (3.8)

[
A

(I)
+ (ζ)

]
i,i′

= (−1)l+1(1− φ2Nq2l−IN )qlζl
N∏
k=1

(ζ−4; q2)ik
(q2; q2)ik

(φ/ζ)2+2k(i′k−ik)×

×
l−i1∑
s=0

(q2; q2)i1
(φ2Nζ−2Nq2s; q2)i1+1

1

s!

ds

dzs

N∏
m=2

(zq2+2δm ; q2)im

∣∣∣∣∣
z=0

, (3.9)

where δm is defined as

δm =

m−1∑
p=1

(ip − i′p). (3.10)

In section 4 we will see the importance of this remarkably simple result (3.9) as it allows for a much simpler

calculation of the operator A
(I)
+ (λ) for arbitrary λ.

3.2 Integral operator construction

The construction of the operator Qf (λ) comes from [8]. We begin by introducing a polynomial ring K[x]
in variable x over the field C and its multi-variable generalisation KN [X], X := {x1, . . . , xN}. We now
introduce a linear map ϕ : W → KN [X] which is uniquely defined by its action on the basis vectors of W

ϕ (vi1 ⊗ · · · ⊗ viN ) = xi11 . . . x
iN
N . (3.11)

This gives a clear way to identify row states in W as monomials in KN [X]. Also note that KN [X] can be
written in the direct sum form

KN [X] =
⊕
l∈Z+

K
(l)
N [X] (3.12)

where K
(l)
N [X] is generated by monomials in N variables of total degree l. It is clear that ϕ|Wl

is an

isomorphism between Wl and K
(l)
N [X].

Now the fact that the algebra Uq(sl(2)) has a representation on the space of polynomials means that
we can construct the transfer matrix, TI(λ;φ), as per (2.2) acting on the space KN [X] with the local Lk-
operator (2.1) now acting in the tensor product C2 ⊗K[xk]. However, working in the space KN [X] allows
us to construct Q-operators more generally as integral operators with factorized kernels.

In [8] Mangazeev proved that an integral operator defined1 by the following action on polynomials of the
form xikk

Qf (λ) : xikk 7→
(
λ

ζ

)ik (q2; q2)ik
(ζ−4; q2)ik

ik∑
p=0

xpk−1x
ik−p
k

(
φ2

λ2

)p
(λ2ζ−2; q2)p(λ

−2ζ−2; q2)ik−p
(q2; q2)p(q2; q2)ik−p

, (3.13)

satisfies the TQ-relation (2.14) as well as the commutation relations (2.13). Notice that from (3.13), Qf (λ)

preserves the degree of a polynomial hence it acts invariantly in the subspace K
(l)
N [X] as does TI(λ;φ). It

is also clear setting λ = ζ in (3.13) that Qf (λ) acts trivially hence

Qf (ζ) = I. (3.14)

1(3.13) is sufficient to define the action of Qf (λ) on any monomial since it has a factorised kernel meaning that product of

polynomials x
ik
k maps to a product of RHS’s in (3.13).
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This result (3.14) is another key ingredient in calculation of the operator A
(I)
+ (λ) for arbitrary λ which we

will see in section 4.
Using (3.13) the action of Qf (λ) on an arbitrary monomial xi11 . . . x

iN
N is

Qf (λ) · xi11 . . . x
iN
N =

N∏
k=1

(
λ

ζ

)ik (q2; q2)ik
(ζ−4; q2)ik

×

×
i1∑

p1=0

· · ·
iN∑

pN=0

N∏
k=1

(
φ2

λ2

)pk (λ2ζ−2; q2)pk(λ−2ζ−2; q2)ik−pk
(q2; q2)pk(q2; q2)ik−pk

x
ik−pk+pk+1

k . (3.15)

Now by taking the coefficient of the monomial x
i′1
1 . . . x

i′N
N we find the matrix elements of Qf (λ)

[Qf (λ)]i,i′ =

(
N∏
k=1

(
λ

ζ

)i′k (q2; q2)i′k
(ζ−4; q2)i′k

) i′1∑
p1=0

N∏
k=1

(
φ2

λ2

)p1+δk (λ2ζ−2; q2)p1+δk(λ−2ζ−2; q2)i′k−p1−δk
(q2; q2)p1+δk(q2; q2)i′k−p1−δk

 ,

(3.16)
where δk as is in (3.10). Note the factor (q−2I , q2)i′k in the denominator of (3.16) means that the Q-operator
Qf (λ) becomes singular in the case I ∈ Z+ since this factor has a simple zero for i′k > I. The Q-operator as
constructed in section 3.1 does not have this problem.

It will also be worthwhile to examine the asymptotic behaviour of Qf (λ) in the limit λ → ∞. In [8] it
was shown that the finite matrix block of Qf (λ) acting in the lth sector behaves as

Qf (λ)|λ→∞ = λlQ∞(1 +O(λ−2)), (3.17)

where

[Q∞]i,i′ = ζ−l

(
N∏
k=1

(
λ

ζ

)i′k (q2; q2)i′k
(ζ−4; q2)i′k

) i′1∑
p1=0

N∏
k=1

(q−2i
′
k ; q2)p1+δk

(q2; q2)p1+δk
(qi

′
kφζ−1)2(p1+δk)

 . (3.18)

Finally now that we have the expression (3.16) we can see that the operator can be constructed instead
as a transfer matrix

Qf (λ) = Tr
(
Q

(1)
f ⊗ · · · ⊗Q

(N)
f

)
, (3.19)

where local L-operators Qf act in the tensor product V ⊗ VI where V is some space spanned by vectors
|pk〉 = 0, . . . , i′k. They have the form

[Qf (λ)]p
′,i′

p,i = δi′+p′,i+p

(
λ

ζ

)i′
(q2; q2)i′

(ζ−4; q2)i′

(
φ2

λ2

)p
(λ2ζ−2; q2)p(λ

−2ζ−2; q2)i′−p
(q2; q2)p(q2; q2)i′−p

. (3.20)

Although this construction as a transfer matrix is not apparent until after the matrix elements of Qf (λ)
have been explicitly calculated it will be useful in the next section. Note that from (3.20) it appears that
the local structure of Qf (λ) is dependent only on the indices p and i′ apart from in the conservation rule
given by the delta function.

4 Connection between Q-operators

So far it has been alluded to that there is a connection between the Q-operators constructed in sections 3.1

and 3.2. In this section we will make that precise. Recall that the Q-operators A
(I)
+ and Qf (λ) obey the

TQ-relation (2.14). Requiring that an operator satisfies (2.14), a second order difference equation, fixes it
up to a constant matrix multiple. Therefore, we can write

A
(I)
+ (λ) = A0Qf (λ) (4.1)
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for some matrix A0 which is independent of λ. If we now set λ = ζ in (4.1) and use the identity (3.14) it is
clear that

A0 = A
(I)
+ (ζ), (4.2)

hence (4.1) becomes

A
(I)
+ (λ) = A

(I)
+ (ζ)Qf (λ) = Qf (λ)A

(I)
+ (ζ). 2 (4.3)

Since we already have an explicit expression for A
(I)
+ (ζ) (3.9) and Qf (ζ) (3.16) in closed form, (4.3)

gives us a remarkably simple way of calculating A
(I)
+ (λ) for arbitrary λ. This is normally a very expensive

calculation (3.1) as it involves an infinite sum over tensors of hypergeometric series 3φ2 which fast becomes
an unbearable calculation for even small systems. Furthermore, we can note that the poles in (3.16) for
I ∈ Z+ which come from the factor (ζ−4; q2)i′k in the denominator cancel exactly with the factor (ζ−4; q2)ik
in (3.9). The result is that the matrix product from (4.3) is perfectly well-defined in the finite dimensional

case I ∈ Z+ as we should require for A
(I)
+ (λ).

The relation (4.3) has been checked in this project for some small cases N = 1, 2, 3, l = 0, 1, 2, 3. However,
(4.3) is a general relation which holds for any length of system N . For this reason it is believed that there

is a local relation between the L-operators of the two Q-operators A
(I)
+ (λ) and Qf (λ) from which the result

(4.3) can be derived. The main goal of this project was to investigate such a local relation, however, no
significant progress was made on this question.

We now aim to construct a composite L-operator from [Qf (λ)]p
′,i′

p,i and [A
(I)
+ (ζ)]n

′,i′

n,i in order to calculate

A
(I)
+ (λ), particularly in the limit λ→ 0 as this result is unknown. This composite L-operator is represented

graphically in figure 3. We build the composite L operator by taking the product of the two L operators

Figure 3: Composite L-operator

[QfA+(λ)]p,p
′;n,n′

i,i′,i′′ := [Qf (λ)]p
′,i′

p,i [A
(I)
+ (ζ)]n

′,i′′

n,i′ = δi′+p′,i+pδi′+n′,i′′+n(−1)i
′′
q−

i′′
2 (i′′+1)+n(I−i′′)φ2(p−n)λ−2p

(λ2ζ−2; q2)p
(q2; q2)p

×

× (q−2n; q2)i′(λ
−2ζ−2; q2)i′−p

(q2; q2)i′−p

(
λqn+i

′′+ 3
2

)i′ (
q−

1
2

)i′2
, (4.4)

where the factor (q2;q2)n′
(q2;q2)n

in (3.8) is superflous and can be removed by a similarity transformation.

Now using the L-operator (4.4), the matrix blocks A
(I)
+ (λ) in Wl are constructed as follows

A
(I)
± (λ) = (1− φ2Nq2l−IN )× Tr

VI

(
Tr
V

(
Tr
Fq

(QfA+(λ)1 ⊗ · · · ⊗QfA+(λ)N )

))
. (4.5)

The first trace (denoted as over VI) is a finite summation over the index i′k = 0, . . . , l. The ordering of the
traces over the spaces V and Fq is not important. The calculation (4.5) has been performed for small cases

N = 1, 2, 3, l = 0, 1, 2, 3 and it agrees with the matrix A
(I)
+ (λ) calculated as per (3.1).

2The ordering is irrelevant since [A
(I)
+ (ζ),A

(I)
+ (λ)] = 0.
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The utility of the composite L-operator (4.4) can now be seen. As λ→ 0 (4.4) behaves as

[QfA+(λ)]p,p
′;n,n′

i,i′,i′′ |λ→0 = δi′+p′,i+pδi′+n′,i′′+n(−1)i
′′+pq−

i′′
2 (i′′+1)+n(I−i′′)+p(p+1)φ2(p−n)ζ2p

1

(q2; q2)p
×

× (q−2n; q2)i′

(q2; q2)i′−p

(
−λ−1qn+i

′′+ 1
2−I−2p

)i′ (
q

1
2

)i′2 (
1 +O(λ2)

)
. (4.6)

It is hoped this approach will allow for the calculation of the matrix A
(I)
+ (λ)|λ→0 in closed form although it

has not been fully developed yet.
Another interesting case worth examining is the relation (4.3) in the limit λ → ∞. Using results (3.7)

and (3.17) we see that a factor of λl cancels out of both sides giving a result which is well defined as λ→∞

A
(I)
+ (ζ)Q∞ = (−1)l+1φ2Mql−IMI. (4.7)

That is, matrices A
(I)
+ (ζ) and Q∞ are inverses of each other up tp a simple scalar factor. Inverting either of

the matrices A
(I)
+ (ζ) and Q∞ for any l is a highly non-trivial problem so this result is interesting as it gives

an explicit answer for their inverses.

5 Conclusion

In this report we studied the six-vertex model and its higher spin generalisations. We give a brief introduction
to the six-vertex model using an arrow representation and a spin representation and showed how the partition
function could be reformulated in terms of the transfer matrix T (1.5) and its spectrum. We then introduced
the higher spin six-vertex model or XXZ spin chain constructed in [7] with horizontal field φ. For spin I ∈ Z+

this gives a finite dimensional transfer matrix TI(λ;φ) acting on the finite dimensional quantum space W .
Otherwise, the transfer matrix acts on W which is infinite dimensional for non-integer I. However, in this
case the transfer matrix is still a direct sum finite dimensional blocks corresponding to the invariant action
within the subspace with total spin l, Wl ⊂W . We showed how Baxter’s famous Q-operator approach allows
for calculation of the spectrum of the transfer matrix first using the standard six-vertex model as an example
(2.10) and then for the more higher spin model (2.16).

We then examined two parallel constructions of explicit Q-operators satisfying the TQ-relation (2.14).

In the first construction from [7] A+
(I)(λ) was a transfer matrix from q-oscillator L-operators acting in the

tensor product Fq ⊗ VI where Fq was the infinite dimensional Fock space. We saw an explicit formula for
this operator evaluated at the special value λ = ζ (3.9) as well as its limiting behaviour as λ→∞.

The second construction from [8] built the operator Qf (λ) as an integral operator acting in the space of
polynomials in N variables based on the idea that we could represent row states as monomials in N variables.
We give an explicit formula for this operator (3.13) and saw that it reduces to the identity operator in the
case λ = ζ. We also see its limiting behaviour in the case λ → ∞ and noted that this operator has the

problem of being singular in the case I ∈ Z+ which A
(I)
+ (λ) did not have.

Finally, we saw the relationship (4.3) between the operators. This is a remarkable result as it allows for

simpler calculation of the matrix A
(I)
+ (λ) (for fixed l) which in general involves a very non-trivial calculation.

We used this relationship to build a composite L-operator to evaluate the matrix A
(I)
+ in the hope that we

could evaluate the particular limit λ→ 0 although this approach was not fully developed. This is potentially
a direction for further study.

The nature of the relationship (4.3) i.e. being independent of the systems length, suggests that there is an
underlying relationship between the local operators that build the two Q-operators. The main focus of this
project was to investigate and find such a local relation, however, no significant progress was made on this
endeavour. This is a particularly interesting feature of the Q-operators constructed and will undoubtedly be
the subject of further study.
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