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Unorientable Extension of the TL-algebra

Motivation/Aims/Set-up/Framing etc

-Motivated by gram determinant of Skein modules...

a concrete question was crystallized: Can you have a an extension
of the Temperley-Lieb algebra (category), where you consider
diagrams on non-orientable surfaces? YES! What about finite
dimensional?...
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Unorientable Extension of the TL-algebra

Plan for the talk

Foundation: The Temperley-Lieb Category.

Overshooting: Construct a combinatorial, linear, monoidal,
category SQ, whose objects are n.n.-integers and whose
morphisms are combinations of “TL-diagrams on surfaces”
considered up to a certain notion of equivalence.

▶ “Square with bands” (SWB) realisation of surfaces -
twisted chord diagrams

▶ “Square with bands” (SWB) diagrams (+ equiv.)

▶ The Category SQ - monoidal structure

Hom-spaces are infinite dimensional! :(
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Unorientable Extension of the TL-algebra

Plan for the talk

Two main steps in this work

Overshooting: Construct a category SQ with infinite dimensional
Hom-spaces.

Refinement*: Identify an “orientable” subcategory SQ+ ⊂ SQ
with a “finitising” map St : SQ+ ↠ Br , then consider

SQ ?

K SQ+ Br/VTL

/K

St≃ /K
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Unorientable Extension of the TL-algebra

The TL category

The Temperley-Lieb Category

Fix a unital commutative ring R and suppose α ∈ R.The
TL-category is an R-linear category defined as follows:

▶ Objects: Non-negative integers

▶ Morphisms: Hom(n,m) is {0} if n +m = 1 mod 2, otherwise
R-linear combinations of type n,m “TL-diagrams”, e.g.

∈ Hom(3, 3), ∈ Hom(1, 7).
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Unorientable Extension of the TL-algebra

The TL category

Temperley-Lieb Diagrams

What we see:

(0, 1) (0, 2) . . . (0, 5)

(1, 1) (1, 2) (1, 3)

What we mean:

{{(0, 1), (1, 1)}, {(0, 2), (0, 3)}, {(0, 4), (1, 2)}, {(0, 5), (1, 3)}}

What is a crossing? Order the vertices AC starting from (0, 1) as
the minimum. Then {v , v ′} crosses {u, u′} if v ≺ u ≺ v ′ ≺ u′.
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Unorientable Extension of the TL-algebra

The TL category

Temperley-Lieb Diagrams: Composition

Composition: Hom(n,m)× Hom(m, l) → Hom(n, l) is defined on
diagrams by vertically “stacking” ((ϕ, ψ) 7→ ψ ◦ ϕ):

D2 ◦ D1 = ◦ = = = D2#D1.

What about

D2 ◦ D ′
1 = ◦ = = α = αD2#D ′

1

Generically D2 ◦ D1 = αL(D1,D2) D2#D1.
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Unorientable Extension of the TL-algebra

The TL category

Temperley-Lieb Diagrams: Tensor Product

⊗ : Hom(n1,m1)× Hom(n2,m2) → Hom(n1 ⊗ n2,m1 ⊗m2) is
defined on diagrams by horizontally “stacking”:

D2 ⊗ D1 = ⊗

=

(0, 1) . . . (0, 4) . . . (0, 8)

(1, 1) . . . (1, 4) . . . (1, 6)

where n1 ⊗ n2 = n1 + n2.
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Unorientable Extension of the TL-algebra

Overshooting: Building the Category SQ
SWB realisation of surfaces

How to draw TL diagrams on surfaces?

TL-diagrams can be drawn on a square frame

We would like to draw diagrams on different surfaces. Use a “disc
with bands” model for surfaces:
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Unorientable Extension of the TL-algebra

Overshooting: Building the Category SQ
SWB realisation of surfaces

Twisted Chord Diagrams

A twisted chord diagram (TCD) of rank N:

▶ a pair partition P of the set {1, 2, . . . , 2N},
▶ a Z2 labelling s : P → Z2.

1

3

02

4

0

5

6
1

∼ ,

1

4

0
2

5

0
3

6

0 ∼

A diagram is orientable if s(P) = {0}.
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Unorientable Extension of the TL-algebra

Overshooting: Building the Category SQ
SWB realisation of surfaces

Twisted Chord Diagrmas

For two diagrams (P1, s1) ∈ T CN1 and (P2, s2) ∈ T CN2 , their
vertical juxtaposition is a twisted chord diagram of rank N1 + N2:

1

2
1#

1

3

02

4

0 =

1

3

02

4

0

5

6
1

Small rank “prime” diagrams:

1

2
1 ∼ ,

1

3

02

4

0 ∼ ,
1

2
0 ∼
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Overshooting: Building the Category SQ
SWB realisation of surfaces

Chordsliding

SWB frames give non-unique realisation of surfaces...

Idea: “Slide one end of a band”

↑ 7→

↓ 7→

View this as a map h(i ,±1) : T CN → T CN ,
h(i ,±1) : (P, s) 7→

(
σ(P), s ′ ◦ σ−1

)
, σ = σ(i±1,P,s) ∈ Sym2N .
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Unorientable Extension of the TL-algebra

Overshooting: Building the Category SQ
SWB realisation of surfaces

Chordsliding

Can define an equivalence on T C by (P, s) ∼ (P ′, s ′) if (P ′, s ′) is
obtained from (P, s) by a finite sequence of chordslides.

Fact: For any (P, s) ∈ T CN , there exist unique integers
g , b ∈ Z≥0 and t ∈ {0, 1, 2} such that

(P, s) ∼
(
#t

i=1
1

2
1

)
#

#g
i=1

1

3

02

4

0

#

(
#b

i=1
1

2
0

)
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Unorientable Extension of the TL-algebra

Overshooting: Building the Category SQ
SWB realisation of surfaces

Intersection Matrix

Fact: For any (P, s) ∈ T CN , there exist unique integers
g , b ∈ Z≥0 and t ∈ {0, 1, 2} such that

(P, s) ∼ (#t
i=1Möb)#(#g

i=1Tor)#(#b
i=1Ann)

Uniqueness? intersection matrix T (P, s) ∈ MN×N(Z2):

1

3

02

4

0

5

6
1

7→

0 1 0
1 0 0
0 0 1


If (P, s) ∼ (P, s ′) then T (P, s) and T (P ′, s ′) are related by
elementary RC op.s ⇒ b = Null(T (P, s)).
Let T C∗

N = {(P, s) ∈ T CN | T (P, s) non-singular}. Then
# : T C∗

N1
× T C∗

N2
→ T C∗

N1+N2



16/37

Unorientable Extension of the TL-algebra

Overshooting: Building the Category SQ
SWB realisation of surfaces

Intersection Matrix
Fact: For any (P, s) ∈ T CN , there exist unique integers
g , b ∈ Z≥0 and t ∈ {0, 1, 2} such that

(P, s) ∼ (#t
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SWB diagrams

We have the “frames” for our diagrams: (P, s) ∈ T C∗
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unambiguously encode a diagram on this frame?

(P, s, f ,E ), f : P → Z≥0, E a “catalan state” inside the square
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Unorientable Extension of the TL-algebra

Overshooting: Building the Category SQ
SWB diagrams

SWB diagrams - Graphs

SWB diagram Θ = (P, s, f ,E ) ∈ SqN(n,m), E is a crossingless
p.p.tn of the vertices

E

. . .

. . .

f1

f2

,

...

...

...
E ,

...

...

...
E

Form the graph G (Θ) = (V ,E ∪ D(Θ)), where
D(Θ) = {{u, ιΘ(u)} | u ∈ VI} where ιΘ : VI → VI .
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Unorientable Extension of the TL-algebra

Overshooting: Building the Category SQ
SWB diagrams

SWB diagrams - Graphs

Fact: If two diagrams Θ,Θ′ ∈ SqN(n,m) satisfy (P, s) = (P ′, s ′)
and G (Θ) = G (Θ′), then Θ = Θ′.

We can describe operations on Θ by its effect on G (Θ)!

Example: We can “delete components” of G (Θ)

7→ or
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Unorientable Extension of the TL-algebra

Overshooting: Building the Category SQ
SWB diagrams

SWB diagrams - Graphs

Given a diagram (P, s, f ,E ) ∈ SqN(n,m), and some connected
component Γ ⊂ G (Θ), define the twist τΓ ∈ Z2.

,
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Unorientable Extension of the TL-algebra

Overshooting: Building the Category SQ
SWB diagrams

SWB diagrams - Vertical Juxtaposition

We want to vertically stack our diagrams:

Θ2#Θ1 = #

= =

L(Θ1,Θ2) = 1.
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SWB diagrams - “Isotopy”

Unlike the TL-case, there is a non-trivial isotopy move, e.g.:

7→
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Unorientable Extension of the TL-algebra

Overshooting: Building the Category SQ
SWB diagrams

SWB diagrams - “Isotopy”

Generically, we can remove ”turnbacks” by pull throughs

...

...

...
E ′ 7→

...

...

...
E ′

(P, s, f ,E ′ ⊔ {“red cup”}) 7→ (P, s, f ′,E ′′)

Can generate an equivalence relation with this move - strong
equivalence of SWB diagrams.
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Unorientable Extension of the TL-algebra

Overshooting: Building the Category SQ
SWB diagrams

Fact: If Θ has no internal components, then its strong equivalence
class has a unique representative w/o turnbacks!

∼
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SWB diagrams - “Handlesliding”

We have the “chordsliding” equivalence move on our surfaces

↑ 7→

7→

Now lets extend this to moves on our diagrams
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SWB diagrams - “Handlesliding”
Generically: “Two bands involved”

...

...

...

...

E 7→

...

...

...

...E

(P, s, f ,E ) 7→ (h(P, s), f ′,E ∪ {“new red cups”})
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...

...

...

...

E 7→

...

...

...

...E
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SWB diagrams - “Handlesliding”

On the level of the surface, we can define an equivalence relation
by (P, s) ∼ (P ′, s ′) if (P ′, s ′) can be obtained from (P ′, s ′) by a
finite sequence of chordslides.

What about on our diagrams? Suppose we define a relation by
Θ ∼ Θ′ if Θ′ can be obtained from Θ by a finite sequence of
handleslides: This won’t be an equivalence, but...

7→ 7→
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SWB diagrams - “Handlesliding”

...

...

...

...

E 7→

...

...

...

...E 7→

...

...

...

...

E
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SWB diagrams - “Handlesliding”

Instead, we can define an equivalence relation on strong
equivalence classes of SWB-diagrams by [Θ]st. ∼ [Θ′]st. if Θ

′′ can
be obtained from Θ by a sequence of handleslides where
[Θ′′]st. = [Θ′]st..

We will call this weak equivalence [[Θ]st.]w := Θ

N.B.: There is a non-trivial check here to see that this is well
defined!! Essentially boils down to finding appropriate
“commutation” relations between the handleslide and pull-through
moves.
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The Category SQ
Let R be a unital commutative ring with α, β ∈ R. The category
SQ(α, β) is defined as the R-linear category with:

▶ Objects: Are non-negative integers

▶ Morphisms: Hom(n,m) = {0} if n +m = 1 mod 2, and
otherwise it is R-linear combinations of weak equivalence
classes of SWB diagrams, Θ Modulo the relations:

Θ = α (Θ \ Γ), Θ = β (Θ \ Λ),

where Γ,Λ are internal components with twist parameters
τΓ = 0, τΛ = 1. e.g.

▶ Composition: Hom(n,m)× Hom(m, l) → Hom(n, l)
((ϕ, ψ) 7→ ψ ◦ ϕ):

Θ2 ◦Θ1 = αL(Θ1,Θ2)Θ2#Θ1
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The Category SQ
Examples:

Θ2 ◦Θ1 = ◦

= = α
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The Category SQ
Examples:

Θ2 ◦Θ1 = ◦

= = α2
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The Category SQ

Examples:

Θ = = β
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The Category SQ
Fact 1: For any Θ ∈ Sq(n,m), there exist unique integers lu and
lt such that:

Θ = αluβlt Θ′ ∈ Hom(n,m),

where Θ′ ∈ Sq(n,m) has no internal components (i.e. the number
of internal components of each type are well defined)!

Fact 2: Any morphism Θ ∈ Hom(n,m) has a factorisation in
terms of diagrams of the following form (using “class. of surf.”)

E

. . .

. . .

f1

f2
, E

f

. . .

. . .

, E
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The Category SQ: Tensor Product
In the TL case we had n1 ⊗ n2 = n1 + n2 on objects, and on
morphisms ”horizontal stacking” of diagrams:

How can we“horizontally stack” SWB?
However, we can add put a copy of the identity on the left...

Θ2 = E2

. . .

. . .

7→ E2

. . .

. . .

. . .

. . .

?
= id⊗Θ2
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The Category SQ: Tensor Product
If we can add a copy of the identity on the right, this would give us
a candidate for a tensor product since it should follow

(Θ1 ⊗ id) ◦ (id ◦Θ2)
?
= (id ◦Θ2) ◦ (Θ1 ⊗ id) := Θ1 ⊗Θ2

Θ1 = E1

. . .

. . .

7→ E1

. . .

. . .

. . .

. . .

= Θ1 ⊗ id
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