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The Temperley-Lieb Category

Fix a unital commutative ring R and suppose o € R.The
TL-category is an R-linear category defined as follows:

» Objects: Non-negative integers

» Morphisms: Hom(n, m) is {0} if n4+m =1 mod 2, otherwise
R-linear combinations of type n, m “TL-diagrams”, e.g.

J

€ Hom(3,3),

=/

€ Hom(1,7).
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How to draw TL diagrams on surfaces?

TL-diagrams can be drawn on a square frame

ARNIRiN

We would like to draw diagrams on different surfaces. Use a “disc
with bands” model for surfaces:

0-O-O-C
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)

o

A diagram is orientable if s(P) = {0}.

S O
2
=N WA OO
o o
2
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Let 7Cy = {(P,s) € TCn | T(P,s) non-singular}. Then
#:TCn, X TCN, = TChy i,
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SWB diagrams - Graphs

SWB diagram © = (P, s, f,E) € Sqn(n, m), E is a crossingless
p.p.tn of the vertices

]

f2

&

fi

Form the graph G(©) = (V, E U D(©)), where
D(©) = {{u,to(u)} | u€ Vi} where 1o : V| = V.

18/37



Unorientable Extension of the TL-algebra .
|—Overshooting: Building the Category SQ
L SWB diagrams UNIVERSITY OF LEEDS

SWB diagrams - Graphs

19/37



LOvershooting: Building the Category SQ
L swB diagrams UNIVERSITY OF LEEDS

SWB diagrams - Graphs

Unorientable Extension of the TL-algebra
[

Fact: If two diagrams ©,0©’ € Sqyn(n, m) satisfy (P,s) = (P',s')
and G(©) = G(O'), then © = ©.

19/37



LOvershooting: Building the Category SQ
L swB diagrams UNIVERSITY OF LEEDS

SWB diagrams - Graphs

Unorientable Extension of the TL-algebra
i

Fact: If two diagrams ©,0©’ € Sqyn(n, m) satisfy (P,s) = (P',s')
and G(©) = G(©'), then © = @

We can describe operations on © by its effect on G(O)!

19/37



Unorientable Extension of the TL-algebra -
LOvershooting: Building the Category SQ
L swB diagrams UNIVERSITY OF LEEDS

,

SWB diagrams - Graphs

Fact: If two diagrams ©,0©’ € Sqyn(n, m) satisfy (P,s) = (P',s')
and G(©) = G(©'), then © = @

We can describe operations on © by its effect on G(O)!

Example: We can “delete components” of G(©)
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SWB diagrams - Vertical Juxtaposition

We want to vertically stack our diagrams:

O2#0; = /_% #

(
A (7

L(01,0;) = 1.
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Unlike the TL-case, there is a non-trivial isotopy move, e.g.:

 — N
(
(

Y

—

)
)

L
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SWB diagrams - “Isotopy”

Generically, we can remove "turnbacks” by pull throughs

(P,s,f,E'U{"red cup”}) — (P,s, ', E")

Can generate an equivalence relation with this move - strong

equivalence of SWB diagrams.
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Fact: If © has no internal components, then its strong equivalence
class has a unique representative w/o turnbacks!
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SWB diagrams - “Handlesliding”

We have the “chordsliding” equivalence move on our surfaces

S

-

—

Now lets extend this to moves on our diagrams
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g

SWB diagrams - “Handlesliding”

Generically: “Two bands involved”

(P,s,f,E) s (h(P,s), f', EU{“new red cups”})
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SWB diagrams - “Handlesliding”

On the level of the surface, we can define an equivalence relation
by (P,s) ~ (P',s") if (P',s’) can be obtained from (P’,s’) by a
finite sequence of chordslides.

What about on our diagrams? Suppose we define a relation by
© ~ @ if @ can be obtained from © by a finite sequence of

handleslides: This won't be an equivalence, but...
= N

-
(
[ i

—

N
®
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SWB diagrams - “Handlesliding”

Instead, we can define an equivalence relation on strong
equivalence classes of SWB-diagrams by [O]s. ~ [©']s. if ©” can
be obtained from © by a sequence of handleslides where

[@”]st. = [@/]st.-

We will call this weak equivalence [[©]s ]w := ©

N.B.: There is a non-trivial check here to see that this is well
defined!! Essentially boils down to finding appropriate
“commutation” relations between the handleslide and pull-through
moves.
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The Category SQ

Let R be a unital commutative ring with «, 8 € R. The category
S9(a, B) is defined as the R-linear category with:
» Objects: Are non-negative integers
» Morphisms: Hom(n,m) = {0} if n+m =1 mod 2, and
otherwise it is R-linear combinations of weak equivalence
classes of SWB diagrams, © Modulo the relations:

©@=a(®\I), ©=3(0\A),
where I, A are internal components with twist parameters
mT = 0,7’/\ =1. e.g.
» Composition: Hom(n, m) x Hom(m, ) — Hom(n, /)
(¢, ¢) = ¥ o g):
©;08; = a(©19)0, 76,
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The Category SQ

Examples:

92091: ﬁ% o

(
(e

\\8Y)
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Examples:

@20@1: f_% o
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(
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The Category SQ

Fact 1: For any © € Sq(n, m), there exist unique integers /, and
I+ such that:

© = alph©" € Hom(n, m),

where © € Sq(n, m) has no internal components (i.e. the number
of internal components of each type are well defined)!

Fact 2: Any morphism © € Hom(n, m) has a factorisation in
terms of diagrams of the following form (using “class. of surf.”)

]

f

m
n.l
m

fi
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The Category SQ: Tensor Product

In the TL case we had n; ® np = n; + ny on objects, and on

morphisms " horizontal stacking” of diagrams:

How can we “horizontally stack” SWB?

However, we can add put a copy of the identity on the left...

{

{

©; = E> % — E>

{

5

{

;id®@2
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The Category SQ: Tensor Product

If we can add a copy of the identity on the right, this would give us
a candidate for a tensor product since it should follow

(01 ®id) o (id 0 ©2) = (id 0 ©2) 0 (01 @ id) := O1 ® O,

e
|
m
{
WY
I
m
/‘\l/\
Y
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