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Abstract

This report presents an overview of a reading course in the basic theory of quantum groups. The
introduction covers the background theory relevant to define and work with these objects. In section 2,
the utility of this background theory is revealed by examining its role in the representation theory of
algebras. In section 3 a specific example of a quantum group, Uq(sl2) is studied.

1 Introduction

The theory of quantum groups is a powerful tool for the mathematical physicist. Through their representation
theory, they provide an algebraic path towards solutions to the Yang-Baxter equation; a rich, well studied
equation with a clear physical interpretation. This report offers an overview of the basic theory of quantum
groups. Since there is a large amount of background theory underpinning this topic, the remainder of this
introduction is dedicated to this background theory. In section 2 we motivate some of this background
material by considering its role in the representation theory of algebras and in section 3 we study Uq(sl2) a
specific example of a quantum group.

1.1 Algebras

Algebras are a common structure in mathematics and physics. Formally, they are vector spaces with a
bilinear and associative multiplication operation. Suppose that A is an algebra, that is, a vector space over
field K. Bilinearity of multiplcation means that it may be interpretted as a linear map µ : A⊗ A→ A. We
will adopt the convention µ(a1 ⊗ a2) = a1a2 for a1, a2 ∈ A to denote multiplication. Associativity means
that µ(µ(a1 ⊗ a2) ⊗ a3) = µ(a1 ⊗ µ(a2 ⊗ a3)) or simply (a1a2)a3 = a1(a2a3) for any a1, a2, a3 ∈ A. Even
more succintly, we can simply say that the following diagram commutes.

A⊗A⊗A

A⊗A A⊗A

A

µ⊗id

id⊗µ

µ

µ

(1.1)

A unital algebra is an algebra A which has a unit element 1A such that a1A = 1Aa = a for all a ∈ A.
Uniqueness of the identity is clear from its defining property. Notice that we can equivalently regard the
identity element as a map η : K → A which satisfies a ”unitarity” property described by the following
commutative diagram,

A⊗A

K⊗A A A⊗K

µ
η⊗id

∼=
∼=

id⊗η
(1.2)

where we identify K⊗A ∼= A ∼= A⊗K via 1⊗ a = a = a⊗ 1. With this description of a unitary algebra, it
is clear that the unit element is simply η(1) := 1A ∈ A. For our purposes, algebras will always be unitary
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meaning that an algebra A is simply a triple A = (A, η, µ) where µ and η are maps satisfying (1.1) and (1.2).
It is worth noting that if µ : A⊗A→ A satisfies (1.1) and (1.2) then so does the map µop := µ◦σ : A⊗A→ A,
where σ is the permutation map σ(a ⊗ b) = b ⊗ a. This means that given an algebra A = (A, η, µ) we can
create another algebra Aop := (A, η, µop) called the opposite algebra of A. An algebra is commutative if
µop = µ.

Finally, we examine the interaction between two algebras, say (A, ηA, µA) and (B, ηB , µB). Firstly, the
natural structure preserving map between them is called an algebra homomorphism. It is a linear map
f : A→ B defined by the properties

ηB = f ◦ ηA, µB ◦ (f ⊗ f) = f ◦ µA, (1.3)

which again may be interpretted as commutative diagrams. Secondly, we can construct the tensor product
algebra A⊗B = (A⊗B, ηA⊗B , µA⊗B) where the product and unit maps are defined by

µA⊗B ((a1 ⊗ b1)⊗ (a2 ⊗ b2)) = µA(a1 ⊗ a2)⊗ µB(b1 ⊗ b2), ηA⊗B = ηA ⊗ ηB . (1.4)

Notice we could equivalently write µA⊗B = (µA ⊗ µB) ◦ σ(23).

1.2 Coalgebras

The language of commutative diagrams is unnecessary for dealing with algebras alone. However, its use is
made clear when considering coalgebras. The definition of a coalgebra is best motivated by equipping a
vector space with appropriate maps such that we can reverse all arrows in diagrams (1.1) and (1.2). With
this in mind we define a coalgebra as a triple C = (C, ε,∆), where C is a vector space over a field K, and ε
and ∆ are linear maps ε : C → K and ∆ : C → C ⊗ C such that the following diagrams commute.

C ⊗ C ⊗ C

C ⊗ C C ⊗ C

C

∆⊗id

id⊗∆

∆

∆

C ⊗ C

K⊗ C C C ⊗K
ε⊗id

id⊗ε

∼=
∼=

∆ (1.5)

The map ∆ is called the coproduct and ε the counit. The condition imposed by the first diagram above
which mirrors (1.1) is known as coassociativity and that imposed by the second diagram is known as the
counitarity.

As with algebras, given a coalgebra, (C, ε,∆), the map ∆op = σ ◦∆ where σ is again the permutation
map, also satisfies the conditions (1.5). For example, coassociativity follows from the following diagram,

C ⊗ C ⊗ C C ⊗ C ⊗ C C ⊗ C ⊗ C

C ⊗ C C ⊗ C C ⊗ C C ⊗ C

C

σ(12) σ(12)

id⊗∆op

∆op⊗id

σ

∆⊗id

id⊗∆

σ

∆⊗id ∆op⊗id

∆op

∆op∆

∆

(1.6)
where we note that the maps σ and σ(12) are their own inverses (σ(12) swaps the first and second tensor
components of a triple tensor1). Equating the two ”boundary” paths in (1.5) from C to the top right copy
of C ⊗ C ⊗ C then yields σ(12) ◦ σ(12) ◦ (id⊗∆op) ◦∆op = (id⊗∆op) ◦∆op = (∆op ⊗ id) ◦∆op as desired.
Counitarity of ∆op can be checked similarly. With this in mind we can construct the opposite coalgebra
Cop = (C, ε,∆op) and similar to the case of algebras we call C cocommutative if ∆op = ∆.

1More generally for any τ ∈ Sn we may consider the map στ which acts on an n-fold tensor product, permuting tensor
components according to the element τ .
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We finish this subsection by noting that the interplay between two coalgebras, say (C, εC ,∆C) and
(B, εB ,∆B), also parallels the case of algebras. We define a coalgebra homomorphism as a linear map
f : C → B such that

∆B ◦ f = (f ⊗ f) ◦∆C , εB ◦ f = εC , (1.7)

and we define the tensor product coalgebra C ⊗B = (C ⊗B, εC⊗B ,∆C⊗B) by

εC⊗B(c⊗ b) = εC(c)εB(b), ∆C⊗B(c⊗ b) =
∑
i,j

(c
(1)
i ⊗ b

(1)
j )⊗ (c

(2)
i ⊗ b

(2)
j ), (1.8)

where ∆C(c) =
∑
i c

(1)
i ⊗ c

(2)
i and likewise for ∆B(b). Notice that we could also write this coproduct as

∆C⊗B = σ(23) ◦ (∆C ⊗∆B).

1.3 Bialgebras

Now that we have defined coalgebras, which were saw were a way to dualise algebras, it is natural to ask if
we can have both structures at once. To achieve this, we now define bialgebras. A bialgebra over a field K
is a quintuple (B, η, µ, ε,∆) where (B, η, µ) is an algebra and (B, ε,∆) is a coalgebra. Furthermore, we also
ask that these operations respect each other in the following sense:

1. Comultiplication ∆ : A→ A⊗A and counit ε : A→ K are algebra homomorphisms.

2. Multiplication µ : A⊗A→ A and unit η : K→ A are coalgebra homomorphisms.

It turns out that conditions 1 and 2 above are both equivalent to the following four conditions (and hence
equivalent to each other)

∆ ◦ µ = (µ⊗ µ) ◦ σ(23) ◦ (∆⊗∆), ∆ ◦ η = η ⊗ η, ε ◦ µ = ε⊗ ε, ε ◦ µ = idK, (1.9)

which all have clear interpretations as commutative diagrams. Given a bialgebra (B, η, µ, ε,∆), the maps
µop and ∆op previously defined also satisfy the above conditions so we can define three more associated
bialgebras

Bop = (B, η, µop, ε,∆), Bop = (B, η, µ, ε,∆op), Bop
op = (B, η, µop, ε,∆

op). (1.10)

A bialgebra homomorphism is a linear map between bialgebras which is both an algebra and coalgebra
homomorphism with respect to the relevant structure. We can also create the tensor product of two bialgebras
(B, ηB , µB , εB ,∆B) and (A, ηA, µA, εA,∆A) simply as (B⊗A, ηB⊗A, µB⊗A, εB⊗A,∆B⊗A) with the previously
defined maps.

1.4 Hopf Algebras

In this section we introduce Hopf algebras which provide a way to relate the independent algebra and
coalgebra structure of a bialgebra. A Hopf algebra over a field K is a bialgebra H = (H, η, µ, ε,∆) equipped
with a bijective K-linear map S : H → H such that

µ ◦ (S ⊗ id) ◦∆ = µ ◦ (id⊗ S) ◦∆ = η ◦ ε. (1.11)

Here S is known as the antipode. The defining property is equivalent to asking that the following diagrams
commute.

H ⊗H H ⊗H

H K H

id⊗S

µ∆

ε η

H ⊗H H ⊗H

H K H

S⊗id

µ∆

ε η

(1.12)

Homomorphisms of Hopf algebras are bialgebra homomorphisms T : H → H ′ such that T ◦ S = S′ ◦ T (we
use an apostrophe to denote the structural maps of the Hopf algebra H ′). Interestingly, this property is no
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weaker than simply requiring T to be a bialgebra homomorphism as the following calculation shows

µ′ ◦ ((T ◦ S − S′ ◦ T )⊗ T ) ◦∆ = µ′ ◦ (T ⊗ T ) ◦ (S ⊗ id) ◦∆− µ′ ◦ (S′ ⊗ id) ◦ (T ⊗ T )∆

= T ◦ (µ ◦ (S ⊗ id) ◦∆)− (µ′ ◦ (S′ ⊗ id) ◦∆′) ◦ T
= T ◦ η ◦ ε− η′ ◦ ε′ ◦ T
= η′ ◦ ε− η′ ◦ ε = 0, (1.13)

which implies T ◦ S − S′ ◦ T = 0 as desired. The tensor product of two Hopf algebras, H and H ′, is simply
their tensor product H ⊗H ′ as bialgebras with the antipode S ⊗ S′.

In order to further probe the structure of Hopf algebras we will now introduce a helpful notation. Recall
that for any a ∈ H, ∆(a) ∈ H ⊗H and thus can be written as a linear combination of tensors as follows

∆(a) =
∑
i

a
(1)
i ⊗ a

(2)
i . (1.14)

In order to better keep track of components we will adopt the Swindler convention of writting the above as
a summation over the element a instead:

∆(a) =
∑
(a)

a(1) ⊗ a(2). (1.15)

The coassociativity property then looks like

(∆⊗ id) ◦∆(a) =
∑
(a)

∑
(a(1))

a(1)(1) ⊗ a(1)(2)

⊗ a(2) =
∑
(a)

a(1) ⊗

∑
(a(2))

a(2)(1) ⊗ a(2)(2)

 = (id⊗∆) ◦∆(a).

(1.16)
The power of this notation becomes clear when we adopt the following shorthand

(∆⊗ id) ◦∆(a) :=
∑
(a)

a(1) ⊗ a(2) ⊗ a(3). (1.17)

Here the summation over (a) is hiding the double summation; the coassociativity property is exactly what
makes this well defined. In fact the above is generalised the above for an n fold coproduct as follows

(∆⊗ id⊗ · · · ⊗ id) ◦ · · · ◦ (∆⊗ id) ◦∆(a) =
∑
(a)

a(1) ⊗ a(2) ⊗ · · · ⊗ a(n+1). (1.18)

With this notation, the counit and antipode properties are respectively written as∑
(a)

ε(a(1))a(2) = a =
∑
(a)

a(1)ε(a(2)),
∑
(a)

S(a(1))a(2) = ε(a)1 =
∑
(a)

a(1)S(a(2)). (1.19)

Using this notation we can begin to prove some important facts about Hopf algebras. The first is that the
antipode is unique: suppose that S and S′ are both linear maps satisfying the defining property (1.11). The
following calculation then shows that they are indeed the same

S(a) =
∑
(a)

ε(a(1))S(a(2))

=
∑
(a)

(
∑

(a(1))

S′(a(1)(1))a(1)(2))S(a(2))

=
∑
(a)

S′(a(1))

∑
(a(2))

a(2)(1)S(a(2)(2))


=
∑
(a)

S′(a(1))ε(a(2))

= S′(a). (1.20)
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Next we consider how the antipode interacts with the given bialgebra structure. As shown in [4] S : H → H
is an anti-algebra and anti-coalgebra homomorphism (we omit the proof here), which means precisely the
following

S(ab) = S(b)S(a), S ◦ η = η, (S ⊗ S) ◦∆ = ∆op ◦ S, ε ◦ S = ε. (1.21)

It is relatively simple to show that an antipode S for a Hopf algebra H is also an antipode for the bialgebra
Hop

op and thus the above is exactly the statement that S : H → Hop
op is a Hopf algebra homomorphism. As

S was defined to be bijective, it follows that this is also an isomorphism. Furthermore, the bialgebras Hop

and Hop admit a Hopf algebra structure with the antipode S−1, and are isomorphic via S. For example we
check that S−1 makes Hop into a Hopf algebra:

µ ◦ (S−1 ⊗ id) ◦∆op(a) = µ ◦ (S−1 ⊗ id) ◦∆op ◦ S(b)

= µ ◦ (S−1 ⊗ id) ◦ (S ⊗ S) ◦∆(b)

= µ ◦ (id⊗ S) ◦∆(b) = ε(b) = ε(S(b)) = ε(a). (1.22)

We used bijectivity to write a = S(b) for some b ∈ H.
One immediate consequence of this theory is that if H is commutative or co-commutative and hence

H = Hop or H = Hop, then uniqueness of the antipode requires that S = S−1 or S2 = id. Because of this
property, it is clear that cocommutativity (and commutativity) place extremely strong constraints on Hopf
algebras, yet fully general Hopf algebras do not give us enough tools to do physics with. The next series of
definitions are intended to address this by weakening the condition of cocommutativity.

A bialgebra B (or Hopf algebra H) over a field K is said to be almost cocommutative if there is an
invertible element R ∈ B ⊗B such that

∆op(a) = R∆(a)R−1, (1.23)

for all a ∈ B. Let us denote such an element R (and its inverse) as

R =
∑
i

xi ⊗ yi, R−1 =
∑
i

x′i ⊗ y′i. (1.24)

For convenience, we denote by Rij ∈ B⊗N , the element of the N -fold tensor product which contains the first
(second) component of R in the i-th (j-th) tensor component. With this notation, we make the following
the series of definitions: An almost cocommutative bialgebra (Hopf algebra) is said to be

1. Coboundary, if it satisfies R21 = R−1 and (ε⊗ ε)(R) = 1;

2. Quasitriangular if

(∆⊗ id)(R) = R13R23, (1.25)

(id⊗∆)(R) = R13R12; (1.26)

3. Triangular if it is Quasitriangular and satisfies R21 = R−1.

An element R satisfying (1.23), (1.25) and (1.26) is called a universal R-matrix. If H is a quasitriangular
Hopf algebra, it is immediately clear that given a universal R-matrix R, the element R−1

21 is also a universal
R-matrix. Property (1.23) for R−1

21 follows by rewriting equation (1.23) for R and applying a permutation

∆(a) = R−1∆op(a)R
σ(12)
=⇒ ∆op(a) = R−1

21 ∆(a)R21. (1.27)

Property (1.26) follows by using multiplicativitity of the co-product to commute taking an inverse with
(∆⊗ id) and then applying a permutation

(∆⊗ id)(R−1) = (R13R23)−1 = R−1
23 R

−1
13

σ(123)
=⇒ (id⊗∆)(R−1

21 ) = R−1
31 R

−1
21 = (R−1

21 )13(R−1
21 )12, (1.28)

and (1.25) follows similarly. We can also prove that R21 and R−1 are universal R-matrices for Hop and Hop

using similar tactics. The introduction of quasitriangular Hopf algebras, specifically as universal envoloping
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algebras of classical and affine Lie algebras known as quantum groups, is the work of Russian mathematician
V.G. Drinfeld [2]. The following major theorem reveals the power of these structures:

If H is a quasitriangular Hopf algebra with universal R-matrix, R, then the following hold

R12R13R23 = R23R13R12, (1.29)

(ε⊗ id)(R) = (id⊗ ε)(R) = 1, (1.30)

(S ⊗ id)(R) = R−1 = (id⊗ S−1)(R), (1.31)

(S ⊗ S)(R) = R. (1.32)

These results are relatively simple to demonstrate

R12R13R23 = R12(∆⊗ id)(R) =
∑
i

(R∆(xi))⊗ yi =
∑
i

(∆op(xi)R)⊗ yi

= (σ(12) ◦ (∆⊗ id)(R))R12 = (σ(12)(R13R23))R12 = R23R13R12. (1.33)

For (1.30) we use the counit property and (1.26)

R = (id⊗ ε⊗ id) ◦ (id⊗∆)(R) = (id⊗ ε⊗ id)(R13R12) = R(
∑
i

ε(yi)xi ⊗ 1). (1.34)

Uniqueness of the unit then gives 1 =
∑
i ε(yi)xi = (id ⊗ ε)(R) as desired (a similar argument works for

(ε⊗ id)(R)). Now we verify (1.31) as follows

(S ⊗ id)(R) · R = (µ⊗ id) ◦ (S ⊗ id⊗ id)(R13R23) = (µ⊗ id) ◦ (S ⊗ id⊗ id)(∆⊗ id)(R)

= ((µ ◦ (S ⊗ id) ◦∆)⊗ id)(R) = (η ⊗ id)(ε⊗ id)(R) = η(1)⊗ 1 = 1H⊗H . (Use (1.30).)

Then since Hop is also a Hopf algebra with universal R-matrix R21 and antipode S−1, we permute the above
result for this algebra to get

(S−1 ⊗ id)(R21) = R−1
21

σ(12)
=⇒ (id⊗ S−1)(R) = R−1. (1.35)

It is clear that (1.32) now follows as a consequence of (1.31)

(S ⊗ S)(R) = (id⊗ S) ◦ (S ⊗ id)(R) = (id⊗ S) ◦ (id⊗ S−1)(R) = R. (1.36)

The equation (1.29) here is the famous Yang-Baxter equation. It was invented by C.N. Yang as a self
consistency condition for relativistic, purely elastic scattering [5] and by R.J. Baxter as a sufficient condition
for commutativity of transfer matrices in 2-dimensional lattice models [1]. It is a well studied physical
equation with beautiful solutions under pinned by rich theory.

The final result we will prove about quasitriangular Hopf algebras is another important one. It contains
an explicit description of the map S2 and produces a Casimir element (a central element). We start with
the element u defined by

u = µ(S ⊗ id)(R21) =
∑
i

S(yi)xi. (1.37)

We will show that u is invertible soon however, it will be more convenient to show this after we have seen
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that ua = S2(a)u. To do this we consider the following

µop ◦ (id⊗ µop) ◦ (id⊗ S ⊗ S2)(R12(∆⊗ id)(∆(a))) = µop(
∑
i,(a)

xia
(1) ⊗ µop((S(yia

(2))⊗ S2(a(3))))

= µop(
∑
i,(a)

xia
(1) ⊗ S(S(a(3)))S(yia

(2)))

= µop(
∑
i

xia
(1) ⊗ S(yia

(2)S(a(3))))

= µop(id⊗ S)

∑
i

(xi ⊗ yi)

∑
(a)

a(1) ⊗ a(2)S(a(3))


= µop(id⊗ S)

∑
i

(xi ⊗ yi)

∑
(a)

ε(a(2))a(1) ⊗ 1


= µop(id⊗ S)(

∑
i

(xi ⊗ yi)(a⊗ 1)) = S(yi)xia = ua,

(1.38)

yet on the other hand we can use the defining property of the R-matrix to find

ua = µop ◦ (id⊗ µop) ◦ (id⊗ S ⊗ S2)(R12(∆⊗ id)(∆(a)))

= µop ◦ (id⊗ S2) ◦ (µop ⊗ id) ◦ (id⊗ S ⊗ id)(R12(∆⊗ id)(∆(a)))

= µop ◦ (id⊗ S2) ◦ (µop ⊗ id) ◦ (id⊗ S ⊗ id)((∆op ⊗ id)(∆(a))R12)

= µop ◦ (id⊗ S2)(
∑
i,(a)

µop(a(2)xi ⊗ S(a(1)yi))⊗ a(3))

= µop ◦ (id⊗ S2)(
∑
i,(a)

S(yi)S(a(1))a(2)xi ⊗ a(3))

= µop ◦ (id⊗ S2)

∑
i

(S(yi)⊗ 1)

∑
(a)

S(a(1))a(2) ⊗ a(3)

 (xi ⊗ 1)


= µop ◦ (id⊗ S2)

∑
i

(S(yi)⊗ 1)

∑
(a)

1⊗ ε(a(1))a(2)

 (xi ⊗ 1)


= µop ◦ (id⊗ S2)

∑
i

S(yi)xi ⊗ a = µop ◦ (id⊗ S2)u⊗ a = S2(a)u. (1.39)

This gives ua = S2(a)u as desired. Using this we now show that u has the inverse v = µ⊗ (id⊗ S2)(R21) =∑
i yiS

2(xi):

uv =
∑
i

uyiS
2(xi) =

∑
i

S2(yi)uS
2(xi)

(1.32)
=

∑
i

S(yi)uS(xi) =
∑
i,j

S(yi)S(yj)xjS(xi)

=
∑
i,j

S(yjyi)xjS(xi) = µop ◦ (id⊗ S)(
∑
i,j

xjS(xi)⊗ yjyi)

= µop ◦ (id⊗ S)((
∑
j

xj ⊗ yj)(
∑
i

S(xi)⊗ yi)) = µop ◦ (id⊗ S)(R(S ⊗ id)(R))

(1.31)
= µop ◦ (id⊗ S)(RR−1) = µop(id⊗ S)(1) = 1. (1.40)

Then the result 1 = uv = S2(v)u gives a left inverse automatically, i.e. v = u−1. Thus we have determined
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S2(a) = uau−1 for all a ∈ H. We use this to now show that S(u)u is a central element

aS(u)u = S(b)S(u)u = S(ub)u = S(S2(b)u)u = S(u)S(S2(b))u = S(u)S2(S(b))u = S(u)uau−1u = S(u)ua,
(1.41)

where we have used the fact that S is a bijection to write a = S(b) for some b ∈ H. Taking a = u−1 in (1.41)
shows that S(u)u = uS(u). This central element uS(u) is often referred to as the quantum Casimir element
of the quasitriangular Hopf algebra H.

2 Representation Theory

In this section we discuss the representation theory of algebras as motivation for the previous definitions.
In the introduction, we started by defining algebras with the language of commutative diagrams. We then
dualised this process in defining coalgebras and introduced bialgebras so that we may have both algebras
and coalgebras simultaneously. In order to relate these two structures of a bialgebra we introduced Hopf
algebras and finally to generalise cocommutativity we introduced (quasi)triangular Hopf algebras. A small
study of these objects revealed they were non-trivial with rich theory. However, it may not seem apparent
why one would embark on this journey in the first place. Representation theory provides an answer for this.

Given a vector space V , a representation of an algebra A (both over the same field K) on V is an
algebra homomorphism ρ : A → End(V ), i.e. we can identify an element of our algebra A with a linear
transformation of V in a way which respects the multiplicative structure of A. Linear transformations of
a vector space form an algebra with composition as the product. Given a representation of A on V it is
actually completely equivalent to regard V as an A-module with A action given by

a · v = ρ(a)(v). (2.1)

Often module language is simpler to use, so we use them interchangeably. A homomorphism of representa-
tions, otherwise an A-module or A-linear map, is a linear map f : V → W which commutes with A action
in the following sense

ρW (a) ◦ T = T ◦ ρV (a). (2.2)

A-module maps are the natural structure preserving maps between representations of A.
Given an A-module V , a vector subspace W ⊂ V is a A-submodule of V if it is invariant under A action,

that is for any w ∈ W and a ∈ A we have a · w ∈ W . An A-module V is irreducible if its only submodules
are {0} and V . Given two A-modules V and W , we can make the direct sum V ⊕W into an A-module with
the action

a · (v ⊕ w) = a · v ⊕ a · w, or ρV⊕W (a) = ρV (a)⊕ ρW (a). (2.3)

Given an algebra A, the classification of irreducible representations of A is useful as these are in some
sense building blocks representations of A; we can form many more representations from their direct sums.
However, given two vector spaces V and W on which A has a representation (say ρV and ρW respectively),
there are many associated vector spaces we can build other than just their direct sum and it is natural to ask
if there are representations of A on these spaces. Two such vector spaces include the tensor product V ⊗W ,
and the space of linear maps Hom(V,W ) (including the dual space V ∗ as a special case when W = K).
However, in general there is no way to form representations of A on these spaces. In fact there is no trivial
representation in general, that is, a representation on the 1 dimensional vector space K.

Instead of working with a completely general algebra A let us insist on some more structure, namely
suppose that H = (H, η, µ, ε,∆) is a Hopf algebra with antipode S. We observe now that this extra
structure is precisely what is needed to define these elusive representations! We start by noting that the
counit ε : H → K is precisely a trivial representation of H. We construct a representation of H on V ⊗W
as follows

ρV⊗W (a) = (ρV ⊗ ρW )∆(a). (2.4)

That ∆ is an algebra homomorphism is precisely what we need to ensure that ρV⊗W is a representation.
The coassociativity and counit properties of ∆ and ε ensure that the canonical vector space isomorphisms
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(V1 ⊗ V2) ⊗ V3
∼= V1 ⊗ (V2 ⊗ V3) and K ⊗ V ∼= V ∼= V ⊗ K are A-module maps. Next we construct a

representation of H on the space Hom(V,W ) according to the action

ρ(a)(T ) =
∑
(a)

ρW (a(1)) ◦ T ◦ ρV (S(a(2)), (2.5)

for T : V →W linear. This is a homomorphism due to the anti-multiplicative nature of the antipode

ρ(a)ρ(b)(T ) =
∑

(a),(b)

ρW (a(1))ρW (b(1)) ◦ T ◦ ρV (S(b(2)))ρV (S(a(2))) =
∑

(a),(b)

ρW (a(1)b(1)) ◦ T ◦ ρV (S(a(2)b(2)))

=
∑
(ab)

ρW ((ab)(1)) ◦ T ◦ ρV (S((ab)(2))) = ρ(ab)(T ). (2.6)

In particular, the representation on the dual space is

ρV ∗(a)(φ)(v) =
∑
(a)

ε(a(1))φ(ρV (S(a(2)))(v)) = φ(ρV (S(
∑
(a)

ε(a(1))a2))(v)) = φ(ρV (S(a))(v)), (2.7)

for φ ∈ V ∗, v ∈ V . Thus we see that Hopf algebras are exactly the structures which let us define represen-
tations on the desired vector spaces.

Let us note that the vector spaces V ⊗W and W⊗V are isomorphic, as vector spaces, via the permutation
map σV,W (v⊗w) = w⊗v. Furthermore, notice that σW,V ◦σV,W . = id which loosely says that the permutation
map squares to the identity. Although this map is K-linear, it is not H-linear in general:

σV,W ◦ρV⊗W (a)(v⊗w) =
∑
(a)

ρW (a(2))(w))⊗(
∑
(a)

ρV (a(1))(v)) = (ρW⊗ρV )(∆op(a))(w⊗v) 6= ρW⊗V (a)◦σV,W (v⊗w).

(2.8)
Clearly it will be H-linear if H is cocommutative, but as we have already seen such an assumption is
too strong. Instead, now suppose that H is a quasitriangular (or triangular) Hopf algebra with universal
R-matrix R ∈ H ⊗H and define a linear map cV,W : V ⊗W →W ⊗ V as follows

cV,W = σV,W ◦ (ρV ⊗ ρW )(R). (2.9)

Since both σV,W and (ρV ⊗ ρW )(R) are vector space isomorphisms (clear from invertibility of R), it follows
that cV,W is a vector space isomorphism. However, it is also H-linear as we now demonstrate

cV,W ◦ ρV⊗W (a) = σV,W [(ρV ⊗ ρW (R)) · (ρV ⊗ ρW (∆(a)))]

= σV,W [(ρV ⊗ ρW )(R∆(a))] = σV,W [(ρV ⊗ ρW )(∆op(a)R)]

= (ρW ⊗ ρV )(∆(a)) ◦ σV,W ((ρV ⊗ ρW (R)) = ρW⊗V ◦ cV,W . (2.10)

It can be checked directly that cW,V ◦ cV,W = (ρV ⊗ ρW )(R21R). This means that for triangular Hopf
algebras we preserve the squaring to identity property of the permutation map, yet this is not the case for
quasitriagular Hopf algebras. For quasitriangular we can think of the map cV,W as braiding2 the represen-
tations V and W . As shown in [3] this braiding is natural in that for A-module maps f : V → V ′ and
g : W →W ′, cV,W and cV ′,W ′ obey

cV ′,W ′ ◦ (f ⊗W ) = (g ⊗ f) ◦ cV,W . (2.11)

A consequence of this naturality and the defining properties (1.25) and (1.26) is that for H-modules U, V
and W , we have

(cV,W ⊗ idU ) ◦ (idV ⊗ cU,W ) ◦ (cU,V ⊗ idW ) = (idW ⊗ cU,V ) ◦ (cU,W ⊗ idV ) ◦ (idU ⊗ cV,W ). (2.12)

2This can be made more precise by introducing representations of the braid group on the n-fold tensor product V ⊗n but
this will not be necessary for our purposes.
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Finally taking U = V = W and setting R̂ = σ ◦ (ρV ⊗ ρV )(R) in the above we arrive at an equivalent form
of the Yang-Baxter equation

R̂12 ◦ R̂23 ◦ R̂12 = R̂23 ◦ R̂12 ◦ R̂23, (2.13)

and thus we have a method of generating solutions to the Yang-Baxter equation.
Before we consider a concrete example of a Hopf algebra in the next section, we will briefly consider the role

of Casimir elements in representation theory. If c ∈ H is a Casimir element and V is an irreducible H module,
then the map ρV (c) : V → V is an A-module map since ρV (c) ◦ ρV (a) = ρV (ca) = ρV (ac) = ρV (a) ◦ ρV (c)
for all a ∈ H. Working over an algebraically closed field K guarantees the existence of an eigenvector
ρV (c)(v) = λv for some v ∈ V, λ ∈ K. Since linear combinations of A module maps are also A-module maps
it follows that (ρV (c)−λ · idV ) : V → V is such a map, and furthermore it has a non-trivial kernel. It is clear
that kernels of A-module maps on V are submodules of V since A action commutes with these maps. As
such Ker((ρV (c)−λidV )) is a submodule of V and hence by irreducibility must be all of V as it is non-trivial.
This says exactly that ρV (c) = λ · idV for any Casimir element c ∈ H.

3 The Hopf Algebra Uq(sl2)

In the previous two sections we examined some introductory theory of Hopf algebras, in particular quasitri-
angular Hopf algebras. Whilst the theory is extremely rich, this report would be too dry without examining
a concrete example. That is the purpose of this section. For a complex parameter q ∈ C \ {0,±1} we define
Uq(sl2) to be the algebra (over C) generated by E,F,K and K−1 subject to the following commutation
relations

KK−1 = K−1K = 1, KEK−1 = q2E, KFK−1 = q−2F, (3.1)

[E,F ] =
K −K−1

q − q−1
. (3.2)

If we introduce the following q-deformed integer and factorial notation

[n] := [n]q =
qn − q−n

q − q−1
, [n]! = [1][2] . . . [n], (3.3)

then we can show by induction, the following commutation relations for powers of E and F

[En, F ] = [n]En−1 (qn−1K − q1−nK−1)

q − q−1
, [E,Fm] = [m]

(qm−1K − q1−mK−1)

q − q−1
Fm−1. (3.4)

For example we will the first of these relations. The base case n = 1 is exactly (3.2). Now suppose that the
formula holds for all k < n and observe

[En, F ] = En−1[E,F ] + [En−1, F ]E = En−1 (K −K−1)

q − q−1
+ En−2[n− 1]

(qn−2K − q2−nK−1)

q − q−1
E

KE=q2EK
=

En−1

q − q−1

(
(1 + [n− 1]qn)K − (1 + [n− 1]q−n)K−1

)
(3.5)

It is then a simple matter of checking that

1 + q±n[n− 1] =
q − q−1 + q±n(qn−1 − q1−n)

q − q−1
= ±q

±(2n−1) − q∓

q − q−1
= q±(n−1)[n], (3.6)

giving the desired result in (3.5). With these commutation relations, any element x ∈ Uq(sl2) which is in
general a linear combination of words in E,F,K and K−1 can be rearranged into a unique sum of terms
of the form EnKmF l for n, l ∈ N and m ∈ Z, that is {EnKmF l | n, l ∈ N;m ∈ Z} is a basis (a Poincare-
Birkhoff-Witt basis to be precise) for Uq(sl2).

As alluded to, Uq(sl2) is not just an algebra but in fact a Hopf algebra (In fact a quasitriangular Hopf
algebra!). To see this we need to introduce counit, coproduct and antipode maps. We start with the

10



counit and coproduct. These are defined by linearly and multiplicatively extending the following action on
generators

∆(E) = E ⊗K + 1⊗ E, ∆(K) = K ⊗K, ∆(F ) = F ⊗ 1 +K−1 ⊗ F (3.7)

ε(K) = 1, ε(E) = ε(F ) = 0. (3.8)

It is a simple matter of checking that these satisfy all the bialgebra relations on all generators. For example
we check coassociativity on E and we check that the coproduct respects the formula KF = q−2FK

(∆⊗ id)(∆(E)) = ∆(E)⊗K + ∆(1)⊗K = E ⊗K ⊗K + 1⊗ E ⊗K + 1⊗ 1⊗ E
(id⊗∆)(∆(E)) = E ⊗∆(K) + 1⊗∆(E) = E ⊗K ⊗K + 1⊗ E ⊗K + 1⊗ 1⊗ E = (∆⊗ id)(∆(E)),

(3.9)

∆(KF ) = ∆(K)∆(F ) = (K ⊗K)(F ⊗ 1 +K−1 ⊗ F ) = KF ⊗K + 1⊗KF
= q−2(FK ⊗K + 1⊗ FK) = q−2(F ⊗ 1 +K−1 ⊗ F )(K ⊗K) = q−2∆(F )∆(K) = ∆(q−2FK).

(3.10)

The antipode is now uniquely determined by its defining property:

η ◦ ε(K) = 1 = µ ◦ (S ⊗ id) ◦∆(K) = S(K)K ⇒ S(K) = K−1 ⇒ S(K−1) = (S(K))−1 = (K−1)−1 = K,
(3.11)

η ◦ ε(E) = 0 = µ ◦ (id⊗ S) ◦∆(E) = E · S(K) + 1 · S(E) = EK−1 + S(E)⇒ S(E) = −EK−1, (3.12)

µ ◦ ε(F ) = 0 = µ ◦ (S ⊗ id) ◦∆(F ) = S(F ) · 1 + S(K−1) · F = S(F ) +KF ⇒ S(F ) = −KF. (3.13)

Thus we have equipped Uq(sl2) with a Hopf algebra structure.
An equivalent definition of the algebra Uq(sl2) is the so called Uh(sl2) algebra for a parameter h 6= 0 ∈ C.

It is generated by the elements E,F and H subject to the relations

[H,E] = 2E, [H,F ] = −2F, [E,F ] =
ehH − e−hH

eh − e−h
=

sinh(hH)

sinh(h)
, (3.14)

where we understand exponentials as formal power series. In this form it is easier to see the correspondence
to the classical Lie algebra sl2; in the limit h→ 0 the above commutation relations are exactly those for the
Lie algebra sl2. It is also clearer that Uh(sl2) is a universal enveloping algebra for sl2 and hence a quantum
group. We go between Uh(sl2) and Uq(sl2) via the identification

q = eh, K = ehH = qH . (3.15)

Another reason for introducing this equivalent description is that we have a nice formula for the universal
R-matrix which makes Uq(sl2) into a quasitriangular Hopf algebra

R := eh(H⊗H)/2
∞∑
n=0

qn(n+1)(1− q−2)

[n]q!
En ⊗ Fn. (3.16)

We present this without proof of the properties (1.23), (1.25) and (1.26). We should remark that the above
is a formal power series which belongs to the proper completion of the tensor product Uh(sl2)⊗ Uh(sl2). If
we were to try to write this element in the Uq(sl2) formulation in terms of K we would fail; there is no way
to write it in rational functions of q.

3.1 Representation Theory of Uq(sl2)

In this section we classify all finite dimensional irreducible representations of Uq(sl2) when q is not a root
of unity. This process is essentially identical to that of the classical Lie algebra sl2. Suppose that V is a
d-dimensional irreducible Uq(sl2) module. Since V is a complex vector space we are guaranteed a non-zero
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eigenvector v ∈ V such that H · vλ = λvλ for some λ ∈ C. This gives K.vλ = qH .vλ = qλ · vλ and we will say
that vλ has weight λ. Now if we act by F on v observe that we lower the weight

K · (F · vλ)) = (KF ) · vλ = q−2FK · vλ = qλ−2Fvλ. (3.17)

Repeating this process we generate a set of eigenvectors with non-degenerate eigenvalues (this is guaranteed
since q is not a root of unity). By finite dimensionality this process must terminate meaning that there is
some lowest weight vector w1 := F l1vλ 6= 0 ∈ V with weight λ−2l1 for some l1 ∈ N such that F ·w1 = 0. The
same process shows that E raises the weight K ·(Evλ) = qλ+2(Evλ) and we come to the conclusion that there
is some highest weight vector w2 := El2vλ with weight λ+ 2l2 for some l2 ∈ N such that E · w2 = 0. Then
{F l2vλ, . . . , Fvλ, vλ, Evλ, . . . , El2vλ} is a set of eigenvectors for K. Uniqueness of eigenvalues ensures this set
is linearly independent and its span is invariant under Uq(sl2) action, i.e. it is a non-trivial submodule so by
irreducibility it spans V . Thus {F l1vλ, . . . , Fvλ, vλ, Evλ, . . . , El2vλ} is a basis for V and hence l1 + l2 +1 = d.

Let us now call the highest weight ν := λ+ 2l2. Labelling eigenvectors by their weight we know we can
form a K eigenbasis of V , {vν−2(d−1), . . . , vλ, . . . , vν}, but we require a definition for weight vectors and need
to require that the commutation relation (3.2) is met. Define weight vectors by

E · vα−2 = a(α, ν)vα, F · vα = a(α, ν)vα−2, (3.18)

for some set of coefficients a(α, ν). Then the commutation relation (3.2) impose the recurrence relation
a(α, ν)2 + a(α+ 2, ν)2 = [α] with boundary a(ν, ν)2 = [ν] as shown in [4]. This has the solution

a(α, ν) =

√[
ν + α

2

] [
ν − α

2
+ 1

]
. (3.19)

Finite dimensionality requires that a(α, ν) is 0 for small enough α and from (3.19) this is only the case when
α = −ν. This means the lowest weight is ν− 2(d− 1) = −ν ⇒ ν = d− 1. Thus we have determined that the
d-dimensional irreducible representations of Uq(sl2) are (up to change a basis) exactly the Uq(sl2)-modules,
V with basis {v1−d, v3−d, . . . , vd−3, vd−1} and action is defined by

K · vα = qαvα, E · vα−2 =

√[
d+ 1 + α

2

] [
d+ 3− α

2

]
vα, F · vα =

√[
d+ 1 + α

2

] [
d+ 3− α

2

]
vα−2.

(3.20)

3.2 Root of Unity Case

In this section we study the algebra Uq(sl2) at its most elusive, that is when q is a root of unity. Suppose
that e is the smallest integer such that qe = ±1. Then we will show that the elements Ee, F e and Ke are
central. For Ke this is clear from the defining commutation relations with generators E and F

KeE = q2eEKe = EKe, KeF = q−2eFKe = FKe. (3.21)

Showing that Ee and F e commute with the generator K is similar. The fact that that Ee (F e) commutes
with the generator F (E) is immediate from (3.4) noting that

[e] =
qe − q−e

q − q−1
=
q−e(q2e − 1)

q − q−1
= 0. (3.22)

This finishes the claim that Ee, F e and Ke are central.
Let us now remark that the representation (3.20) is still a valid representation for d < e. This is because

in section 3.1, the assumption that q was not a root of unity was only used to conclude that eigenvalues were
non-degenerate. The spectrum of K in (3.20) reveals that eigenvalues of different basis elements differ by a
factor of q2l where 1 ≤ l ≤ d−1. Thus when e is odd and d < e it is clear that 2l is not a multiple of e hence
q2l 6= ±1. If e is even and d < e then we require qe = −1 so q2l 6= 1 for any 1 < l < d − 1. Thus section
3.1 shows that the irreducible representations of Uq(sl2) of dimension d < e are exactly the representations
(3.20).
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Now let us examine the irreducible representations of Uq(sl2) of dimension d > e. In fact there are
none! To show this, suppose for a contradiction that V is such a Uq(sl2)-module. If there exists a non-
zero eigenvector of K (say K · v = κv for κ ∈ C, v ∈ V ) such that F · v = 0, then we claim that the set
B = {v,E · v, . . . , Ee−1 · v} spans a submodule of at most dimension e. To show this it suffices to show that
the span is preserved under the action of the generators. As we saw in section 3.1 the defining commutation
relations mean that applying E to an eigenvector of K produces another eigenvector and hence B is a set
of eigenvectors for K, so K preserves its span. It is also clear that E action also preserves the span as
E(B) = {E · v,E2 · v, . . . , Ee−1 · v,Ee · v} and centrality of Ee implies that it acts as a multiple of the
identity. Finally, B is preserved under F -action since,

FEk · v = EkF · v− [Ek, F ] = 0− [k]Ek−1 (qk−1K − q1−kK−1)

q − q−1
· v =

[k](q1−kκ−1 − qk−1κ)

q − q−1
Ek−1 · v, (3.23)

which is clearly in the span of B for 0 ≤ k ≤ e− 1. If there is no eigenvector v of K which vanishes under F ,
then starting with any eigenvector w ∈ V of K (existence is guaranteed), similar arguments show that the
set {w,F ·w, . . . , F e−1 ·w} spans a submodule of at most dimension e. Thus in either case we have derived
a contradiction.

Finally we consider the most interesting case: e-dimensional representations of Uq(sl2). Instead of deriving
it here, we will take the approach of simply stating what the e-dimensional representations are and verifying
as in [3]. The claim is that for three complex parameters µ, a, b ∈ C (µ 6= 0) we can define a family of
Uq((sl)2)-modules W (µ; a, b) with basis w0, w1, . . . we−1 and action

K · wj = µq−2jwj for all j,

F · wj = wj+1 for 0 ≤ j ≤ e− 2,

F · we−1 = bw0,

E · wj =

(
ab+

[j]q
q − q−1

(µq1−j − µ−1qj−1)

)
wj−1 for 1 ≤ j ≤ e− 1,

E · w0 = awe−1. (3.24)

The defining relations (3.1) are trivial to check, so we need only check (3.2). For 1 ≤ j ≤ e− 2 this is simple

(EF − FE) · wj = Ewj+1 − F
(
ab+

[j]q
q − q−1

(µq1−j − µ−1qj−1)

)
wj−1

=

(
ab+

[j + 1]q
q − q−1

(µq−j − µ−1qj)− ab− [j]q
q − q−1

(µq1−j − µ−1qj−1)

)
wj

=
1

(q − q−1)2

(
(qj+1 − q−j−1)(µq−j − µ−1qj)− (qj − q−j)(µq1−j − µ−1qj−1)

)
wj

=
1

(q − q−1)2

(
µq−2j(q − q−1)− µ−1q2j(q − q−1)

)
wj

=
µq−2j − µ−1q2j

q − q−1
=
K −K−1

q − q−1
wj . (3.25)

The j = 0 case is as follows

(EF − FE)w0 = Ew1 − aFwe−1 =

(
ab+

µ− µ−1

q − q−1
− ab

)
w0 =

µ− µ−1

q − q−1
w0 =

K −K−1

q − q−1
w0. (3.26)

The case j = e− 1 is similar so we omit it here. Since we know that Ee, F e and Ke are all central, we know
they act as multiples of the identity map. It is clear from the action described above that F e = b · id and
Ke = µe · id. The value of Ee is not as simple to write yet it can still be found by acting on w0 (or any basis
vector)

Ee = a

e−1∏
j=1

(
ab+

[j]q
q − q−1

(µq1−j − µ−1qj−1)

)
· id. (3.27)
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Finally we will note that while b 6= 0 the representation is irreducible since repeated F -action on a K-
eigenvector can always generate the basis. However, suppose that b = 0. Then the vector we−1 is invariant
under F and K action. We may attempt to generate the basis by repeated E action, however if for some
1 ≤ j ≤ e− 1 we have

[j]q
q − q−1

(µq1−j − µ−1qj−1) = 0⇒ (µq1−j − µ−1qj−1) = 0⇒ µ2 = q2(j−1), (3.28)

then this process is prematurely stopped at the basis vector wj ; we have found a Uq(sl2) invariant subspace.
That is for b = 0 and µ = ±qj−1 (1 ≤ j ≤ e − 1), W (µ; a, b) is reducible with a non-trivial submodule
spanned by {wj , . . . , we−1}.
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