A Terminating q-Lauricella Transformation Formula

Benjamin Morris

June 18, 2023

The purpose of this note is to give a self contained discussion and proof of a charming q-series identity discovered in a previous project of mine. We first introduce some basic notation. We will use the standard notation for the finite q-Pochhammer symbol

$$
(x ; q)_{m}= \begin{cases}(1-x)(1-q x) \ldots\left(1-q^{m-1} x\right), & m>0 \tag{1}\\ 1, & m=0 \\ {\left[\left(1-q^{-1} x\right)\left(1-q^{-2} x\right) \ldots\left(1-q^{m} x\right)\right]^{-1},} & m<0\end{cases}
$$

aswell as the infinite q-Pochhammer symbol which is defined whenever $|q|<1$

$$
\begin{equation*}
(x ; q)_{\infty}=\prod_{n=0}^{\infty}\left(1-q^{n} x\right) \tag{2}
\end{equation*}
$$

Notice that formulas (1) and (2) can be zero or singular when x is an integer power of q. Such cases require additional care as we will see. In this note we freely use identities for $(x ; q)_{n}$ and $(x ; q)_{\infty}$ from [2, Appendix I , and we will adopt the implicit base convention $(x)_{n}=(x ; q)_{n}$ and $(x)_{\infty}=(x ; q)_{\infty}$.

We can now state the main result:
Proposition 1. Fix any integer $n \geq 1$ and non-negative integer tuples $\boldsymbol{k}=\left(k_{0}, k_{1}, \ldots, k_{n}\right) \in \mathbb{N}^{n+1}$, l= $\left(l_{1}, \ldots, l_{n}\right) \in \mathbb{N}^{n}$, and $\boldsymbol{m}=\left(m_{1}, \ldots, m_{n-1}\right) \in \mathbb{N}^{n-1}$. Denote $k=\sum_{j=0}^{n} k_{j}, l=\sum_{j=1}^{n} l_{j}$, and $m=\sum_{j=1}^{n-1} m_{j}$. Then for a complex number q with $0<|q|<1$, and complex parameters y, and z (with $0<|z|<1$), we have the following equality:

$$
\begin{align*}
& \frac{(y)_{l+m}}{(y z)_{l+m}} \sum_{\boldsymbol{\lambda} \in \mathbb{N}^{n}} \sum_{\boldsymbol{\mu} \in \mathbb{N}^{n-1}}\left[\frac{(z)_{\lambda+\mu} \prod_{j=1}^{n}\left(q^{-l_{j}}\right)_{\lambda_{j}} \prod_{j=1}^{n-1}\left(q^{-m_{j}}\right)_{\mu_{j}}}{\left(q^{1-l-m} / y\right)_{\lambda+\mu} \prod_{j=1}^{n}(q)_{\lambda_{j}} \prod_{j=1}^{n-1}(q)_{\mu_{j}}}\right. \\
& \left.\times q^{\sum_{j=1}^{n} \lambda_{j}\left(1+k_{j}+\sum_{a=1}^{j-1}\left(k_{a}-\left(l_{a}+m_{a}\right)\right)+\sum_{j=1}^{n-1} \mu_{j}\left(1+\sum_{a=1}^{j}\left(k_{a}-\left(l_{a}+m_{a}\right)\right)+m_{j}\right)\right.}\right] \\
= & z^{k_{0}} \frac{(y)_{k}}{(y z)_{k}} \sum_{\kappa \in \mathbb{N}^{n+1}}\left[\frac{(z)_{\kappa} \prod_{j=0}^{n}\left(q^{-k_{j}}\right)_{\kappa_{j}}}{\left(q^{1-k} / y\right)_{\kappa} \prod_{j=0}^{n}(q)_{\kappa_{j}}}\left(q^{1+k_{0}-k} /(y z)\right)^{\kappa_{0}} q^{\sum_{j=1}^{n} \kappa_{j}\left(1+k_{j}-\sum_{a=j}^{n}\left(k_{a}-\left(l_{a}+m_{a}\right)\right)\right)}\right] \tag{3}
\end{align*}
$$

where we adopt the same labelling convention $\boldsymbol{\kappa}=\left(\kappa_{0}, \kappa_{1}, \ldots, \kappa_{n}\right)$ for components of $\boldsymbol{\kappa}$ as per \boldsymbol{k}. We also use the shorthand $\kappa=\sum_{j=0}^{n} \kappa_{j}, \lambda=\sum_{j=1}^{n} \lambda_{j}$ and $\mu=\sum_{j=1}^{n-1} \mu_{j}$, as well as the convention $m_{n}=0$ wherever it appears.

We will not give the proof of proposition 1 yet, however, we can immediately note that both sides are finite sums in light of the $\left(q^{-a}\right)_{\alpha}$ terms in the numerators which vanish for $\alpha>a$. We choose to write infinite sums to make explicit the connection with q-Lauricella series. To do so succintly, we define two auxilliary n-tuples of integers $\boldsymbol{r}=\left(r_{j}\right)$ and $\boldsymbol{p}=\left(p_{j}\right)$ by

$$
\begin{equation*}
r_{j}=1+\sum_{a=1}^{j}\left(k_{a}-\left(l_{a}+m_{a}\right)\right), \quad p_{j}=1-\sum_{a=j}^{n}\left(k_{a}-\left(l_{a}+m_{a}\right)\right) \tag{4}
\end{equation*}
$$

for $j=1, \ldots, n$ (taking $m_{n}=0$ as before). Let us also denote by $\hat{\boldsymbol{r}}$ the ($n-1$)-tuple $\left(r_{1}, \ldots r_{n-1}\right)$, and by $\tilde{\boldsymbol{k}}$ the $(n-1)$-tuple $\left(k_{1}, \ldots, k_{n}\right)$ for convenience.

Now introduce the type D, q-Lauricella series treated in [1]

$$
\begin{equation*}
\Phi_{D}^{(n)}\left[\beta ; \alpha_{1}, \ldots, \alpha_{n} ; \gamma ; q ; x_{1}, \ldots, x_{n}\right]=\sum_{\nu_{1}=0}^{\infty} \cdots \sum_{\nu_{n}=0}^{\infty} \frac{(\beta)_{\nu}\left(\alpha_{1}\right)_{\nu_{1}} \ldots\left(\alpha_{n}\right)_{\nu_{n}}}{(\gamma)_{\nu}(q)_{\nu_{1}} \ldots(q)_{\nu_{n}}} x_{1}^{\nu_{1}} \ldots x_{n}^{\nu_{n}}, \tag{5}
\end{equation*}
$$

where as before we use the notation $\nu=\sum_{j=1}^{n} \nu_{j}$. Using (4), and (5), the equality (3) is written succinctly as $\Theta_{\boldsymbol{k}, \boldsymbol{l}, \boldsymbol{m}}=\Omega_{\boldsymbol{k}, \boldsymbol{l}, \boldsymbol{m}}$, where

$$
\begin{equation*}
\Theta_{\boldsymbol{k}, \boldsymbol{l}, \boldsymbol{m}}=\frac{(y)_{l+m}}{(y z)_{l+m}} \Phi_{D}^{(2 n-1)}\left[z ; q^{-\boldsymbol{l}}, q^{-\boldsymbol{m}} ; q^{1-l-m} / y ; q ; q^{\boldsymbol{r}+\boldsymbol{l}+(\boldsymbol{m}, 0)}, q^{\hat{\boldsymbol{r}}+\boldsymbol{m}}\right] \tag{6}
\end{equation*}
$$

is the left hand side, and

$$
\begin{equation*}
\Omega_{\boldsymbol{k}, l, \boldsymbol{m}}=z^{k_{0}} \frac{(y)_{k}}{(y z)_{k}} \Phi_{D}^{(n+1)}\left[z ; q^{-\boldsymbol{k}} ; q^{1-k} / y ; q ; q^{1+k_{0}-k} /(y z), q^{\boldsymbol{p}+\tilde{\boldsymbol{k}}}\right] \tag{7}
\end{equation*}
$$

is the right hand side. Here we are using element-wise exponentian short hand $q^{\boldsymbol{x}}=\left(q^{x_{1}}, \ldots q^{x_{m}}\right)$.
A standard proceedure for dealing with expressions such as (6) and (7) may be to use [1, (4.1)] to rewrite them in terms of ${ }_{m+1} \phi_{m}$ basic hypergeometric functions (See [2, (1.2.22)]) and work with known transformation forumlae thereof. This approach is not valid here. For example, applying [1, (4.1)] to (6) yields

$$
\Theta_{\boldsymbol{k}, \boldsymbol{l}, \boldsymbol{m}} \propto{ }_{2 n} \phi_{2 n-1}\left[\begin{array}{c}
q^{1-l-m} /(y z), q^{\boldsymbol{r}+\boldsymbol{l}+(\boldsymbol{m}, 0)}, q^{\hat{\boldsymbol{r}}+\boldsymbol{m}} \tag{8}\\
\left.q^{r_{1}+m_{1}}, \ldots, q^{r_{n-1}+m_{n-1}}, q^{r_{n}}, q^{r_{1}}, \ldots, q^{r_{n-1}} ; q, z\right], ~
\end{array}\right.
$$

which contains denominator arguments of the form q^{a} with a potentially a negative integer. In this case the ${ }_{m+1} \phi_{m}$ function is undefined and a similar problem occurs with the RHS (7).

Fortunately we do not need the transformation rule $[1,(4.1)]$; we can settle for the intermediate step

$$
\begin{equation*}
\Phi_{D}^{(n)}[\beta ; \boldsymbol{\alpha} ; \gamma ; q ; \boldsymbol{x}]=\frac{(\beta)_{\infty}}{(\gamma)_{\infty}} \sum_{a=0}^{\infty} \frac{(\gamma / \beta)_{a}}{(q)_{a}} \beta^{a} \prod_{j=1}^{n}\left(\sum_{\nu_{j}=1}^{\infty} \frac{\left(\alpha_{j}\right)_{\nu_{j}}}{(q)_{\nu_{j}}}\left(x_{j} q^{a}\right)^{\nu_{j}}\right) \tag{9}
\end{equation*}
$$

In [1] the bracketed sums are evaluated using the infinite summation identity for ${ }_{1} \phi_{0}[\alpha ; q, x]$ [2, (II.3)], however, in our case these sums are terminating since α_{j} is always a negative integer power of q. We therefore apply the finite summation identity [2, (II.4)]

$$
\begin{equation*}
{ }_{1} \phi_{0}\left[q^{-m} ; q, x\right]=\sum_{n=0}^{\infty} \frac{\left(q^{-m}\right)_{n}}{(q)_{n}} x^{n}=\left(x q^{-m}\right)_{m} \tag{10}
\end{equation*}
$$

Combining formulae (9) and (10) we obtain

$$
\begin{align*}
\Theta_{\boldsymbol{k}, l, \boldsymbol{m}} & =\frac{(y)_{l+m}}{(y z)_{l+m}} \frac{(z)_{\infty}}{\left(q^{1-l-m} / y\right)_{\infty}} \sum_{\lambda=0}^{\infty} \frac{\left(q^{1-l-m} /(y z)\right)_{\lambda}}{(q)_{\lambda}}\left(q^{r_{n}+\lambda}\right)_{l_{n}} z^{\lambda} \prod_{j=1}^{n-1}\left(q^{r_{j}+m_{j}+\lambda}\right)_{l_{j}}\left(q^{r_{j}+\lambda}\right)_{m_{j}} \\
& =\frac{(z)_{\infty}}{(q / y)_{\infty}} \frac{(y)_{l+m}}{(y z)_{l+m}}\left(\frac{\left(q^{1-l-m} /(y z)\right)_{l+m}}{\left(q^{1-l-m} / y\right)_{l+m}} z^{l+m}\right) \sum_{\lambda=0}^{\infty} \frac{(q /(y z))_{\lambda-l-m}}{(q)_{\lambda}}\left(\prod_{j=1}^{n}\left(q^{r_{j}+\lambda}\right)_{l_{j}+m_{j}}\right) z^{\lambda-l-m} \\
& =\frac{(z)_{\infty}}{(q / y)_{\infty}} \sum_{\lambda=0}^{\infty} \frac{(q /(y z))_{\lambda-l-m}}{(q)_{\lambda}}\left(\prod_{j=1}^{n}\left(q^{r_{j}+\lambda}\right)_{l_{j}+m_{j}}\right) z^{\lambda-l-m} \tag{11}
\end{align*}
$$

for the LHS, where again we understand $m_{n}=0$, and

$$
\begin{align*}
\Omega_{k, l, m} & =z^{k_{0}} \frac{(y)_{k}}{(y z)_{k}} \frac{(z)_{\infty}}{\left(q^{1-k} / y\right)_{\infty}} \sum_{\kappa=0}^{\infty} \frac{\left(q^{1-k} /(y z)\right)_{\kappa}}{(q)_{\kappa}}\left(q^{1+\kappa-k} /(y z)\right)_{k_{0}}\left(\prod_{j=1}^{n}\left(q^{p_{j}+\kappa}\right)_{k_{j}}\right) z^{\kappa} \\
& =\left(z^{k_{0}} \frac{\left(y q^{k-k_{0}}\right)_{k_{0}}}{\left(y z q^{k-k_{0}}\right)_{k_{0}}} \frac{\left(q^{1-k} /(y z)\right)_{k_{0}}}{\left(q^{1-k} /(y)\right)_{k_{0}}}\right) \frac{(y)_{k-k_{0}}}{(y z)_{k-k_{0}}} \frac{(z)_{\infty}}{\left(q^{1-\left(k-k_{0}\right)} / y\right)_{\infty}} \sum_{\kappa=0}^{\infty} \frac{\left(q^{1-\left(k-k_{0}\right)} /(y z)\right)_{\kappa}}{(q)_{\kappa}}\left(\prod_{j=1}^{n}\left(q^{p_{j}+\kappa}\right)_{k_{j}}\right) z^{\kappa} \\
& =\frac{(y)_{k-k_{0}}}{(y z)_{k-k_{0}}}\left(\frac{\left(q^{1-\left(k-k_{0}\right)} /(y z)\right)_{k-k_{0}}}{\left(q^{\left.1-\left(k-k_{0}\right) /(y)\right)_{k-k_{0}}} z^{k-k_{0}}\right) \frac{(z)_{\infty}}{(q / y)_{\infty}} \sum_{\kappa=0}^{\infty} \frac{(q /(y z))_{\kappa-\left(k-k_{0}\right)}}{(q)_{\kappa}}\left(\prod_{j=1}^{n}\left(q^{p_{j}+\kappa}\right)_{k_{j}}\right) z^{\kappa-\left(k-k_{0}\right)}}\right. \\
& =\frac{(z)_{\infty}}{(q / y)_{\infty}} \sum_{\kappa=0}^{\infty} \frac{(q /(y z))_{\kappa-\left(k-k_{0}\right)}}{(q)_{\kappa}}\left(\prod_{j=1}^{n}\left(q^{p_{j}+\kappa}\right)_{k_{j}}\right) z^{\kappa-\left(k-k_{0}\right)}, \tag{12}
\end{align*}
$$

for the RHS. It follows from these expressions that both $\Theta_{\boldsymbol{k}, \boldsymbol{l}, \boldsymbol{m}}$ and $\Omega_{\boldsymbol{k}, \boldsymbol{l}, \boldsymbol{m}}$ are independent of k_{0}, and depend on l_{i} and m_{i}, only in the combinations $l_{i}+m_{i}$ (both of these facts are necessary for (3) to hold). By cancelling the prefactors in (11) and (12), and relabelling $l_{i}+m_{i} \mapsto l_{i}$ for $i=1, \ldots, n-1, k-k_{0} \mapsto k=\sum_{j=1}^{n} k_{j}$ and $q /(y z) \mapsto y$, to better reflect the dependence, we have reduced the equality $\Theta_{\boldsymbol{k}, \boldsymbol{l}, \boldsymbol{m}}=\Omega_{\boldsymbol{k}, \boldsymbol{l}, \boldsymbol{m}}$ to the following.

Proposition 2. For any integer $n \geq 1$, complex parameter q, such that $0<|q|<1$, complex parameters y and z (with $0<|z|<1$), and non-negative integer tuples $\boldsymbol{l}=\left(l_{j}\right) \in \mathbb{Z}_{\geq 0}^{n}$ and $\boldsymbol{k}=\left(k_{j}\right) \in \mathbb{Z}_{\geq 0}^{n}(j=1, \ldots, n)$, we have the following equality

$$
\begin{equation*}
\sum_{\lambda=0}^{\infty} \frac{(y)_{\lambda-l}}{(q)_{\lambda}}\left(q^{r_{1}+\lambda}\right)_{l_{1}} \ldots\left(q^{r_{n}+\lambda}\right)_{l_{n}} z^{\lambda-l}=\sum_{\kappa=0}^{\infty} \frac{(y)_{\kappa-k}}{(q)_{\kappa}}\left(q^{p_{1}+\kappa}\right)_{k_{1}} \ldots\left(q^{p_{n}+\kappa}\right)_{k_{n}} z^{\kappa-k} \tag{13}
\end{equation*}
$$

where $k=\sum_{j=1}^{n} k_{j}, l=\sum_{j=1}^{n} l_{j}$, and p_{j} and r_{j} are as per (4) (with $\left.\left(l_{a}+m_{a}\right) \mapsto l_{a}\right)$.
By comparison of the tail of both sides in (13) ($\lambda>l$ and $\kappa>k$ for the LHS and RHS respectively) with the series ${ }_{1} \phi_{0}[y ; q, z]$ we have absolute convergence. The proof of proposition 2 requires two technical lemmas.

Lemma 1. With $\boldsymbol{k}, \boldsymbol{l}, k, l$, and p_{j} as per proposition 2, suppose that $k \geq l$ and define $\Delta=k-l \geq 0$. Then for any integer $0 \leq \kappa \leq \Delta-1$ we have

$$
\begin{equation*}
\left(q^{p_{1}+\kappa}\right)_{k_{1}} \ldots\left(q^{p_{n}+\kappa}\right)_{k_{n}}=0 \tag{14}
\end{equation*}
$$

Proof. It suffices to show that for any $0 \leq \kappa \leq \Delta-1$, there exists j such that $p_{j}+\kappa \leq 0$ and $p_{j}+\kappa+k_{j}>0$, that is, $\{0,1, \ldots, \Delta-1\} \subset U$ where $U=\bigcup_{j=1}^{n}\left(-\left(p_{j}+k_{j}\right),-p_{j}\right]$. Since $-\left(p_{j}+k_{j}\right)=-\left(p_{j+1}+l_{j}\right) \leq-p_{j+1}$ (for $j=1, \ldots, n-1$), it follows that U is an overlapping union of intervals giving

$$
U=\left(\min _{j=1}^{n}\left(-\left(p_{j}+k_{j}\right)\right), \max _{j=1}^{n}\left(-p_{j}\right)\right]:=(m, p] .
$$

Now note that $p \geq-p_{1}=\Delta-1$ and $m \leq-\left(p_{n}+k_{n}\right)=-\left(1+l_{n}\right)<0$ so we are done.
Lemma 2. With $\boldsymbol{k}, \boldsymbol{l}, k, l$, and r_{j} as per proposition 2, suppose that $k \geq l$ and define $\Delta=k-l \geq 0$. Then for any integer $\lambda \geq 0$ we have

$$
\begin{equation*}
\left(q^{r_{1}+\lambda}\right)_{k_{2}} \ldots\left(q^{r_{n-1}+\lambda}\right)_{k_{n}}=0, \quad \Leftrightarrow \quad\left(q^{r_{1}+\lambda}\right)_{l_{1}} \ldots\left(q^{r_{n-1}+\lambda}\right)_{l_{n-1}}=0, \quad \Leftrightarrow \quad \lambda \leq r:=\max _{j=1}^{n-1}\left(-r_{j}\right) \tag{15}
\end{equation*}
$$

Furthermore, for any integer $\lambda>r$ we have

$$
\begin{equation*}
\frac{\left(q^{1+\lambda}\right)_{k_{1}}\left(q^{r_{1}+\lambda}\right)_{k_{2}} \ldots\left(q^{r_{n-1}+\lambda}\right)_{k_{n}}}{\left(q^{r_{1}+\lambda}\right)_{l_{1}} \ldots\left(q^{r_{n}+\lambda}\right)_{l_{n}}}=\frac{(q)_{\lambda+\Delta}}{(q)_{\lambda}} \tag{16}
\end{equation*}
$$

Proof. For the first claim define $K_{0}=\left\{\lambda \in \mathbb{Z}_{\geq 0} \mid\left(q^{r_{1}+\lambda}\right)_{k_{2}} \ldots\left(q^{r_{n-1}+\lambda}\right)_{k_{n}}=0\right\}$ and similarly define $L_{0}=\left\{\lambda \in \mathbb{Z}_{\geq 0} \mid\left(q^{r_{1}+\lambda}\right)_{l_{1}} \ldots\left(q^{r_{n-1}+\lambda}\right)_{l_{n-1}}=0\right\}$. Clearly $\lambda \in K_{0}$, if and only if there is some $1 \leq j \leq n-1$ such that $k_{j+1}>-\left(r_{j}+\lambda\right) \geq 0$, giving $L_{0}=\left(\bigcup_{j=1}^{n-1}\left(-\left(r_{j}+k_{j+1}\right),-r_{j}\right]\right) \cap Z_{\geq 0}$. Similarly, one can find that $L_{0}=\left(\bigcup_{j=1}^{n-1}\left(-\left(r_{j}+l_{j}\right),-r_{j}\right]\right) \cap Z_{\geq 0}$. These unions of intervals are overlapping since $-\left(r_{j}+k_{j+1}\right)=$ $-\left(r_{j+1}+l_{j+1}\right) \leq-r_{j+1}$ and $-\left(r_{j}+l_{j}\right)=-\left(r_{j-1}+k_{j}\right) \leq-r_{j-1}$, for $j=1, \ldots n-2$ and $j=2, \ldots n-1$ respectively, therefore

$$
\begin{aligned}
& \bigcup_{j=1}^{n-1}\left(-\left(r_{j}+k_{j+1}\right),-r_{j}\right]=\left(\min _{j=1}^{n-1}\left(-\left(r_{j}+k_{j+1}\right)\right), \max _{j=1}^{n-1}\left(-r_{j}\right)\right]:=\left(m_{1}, r\right], \\
& \bigcup_{j=1}^{n-1}\left(-\left(r_{j}+l_{j}\right),-r_{j}\right]=\left(\min _{j=1}^{n-1}\left(-\left(r_{j}+l_{j}\right)\right),{\underset{j=1}{n-1}}_{j=1}^{n-1}\left(-r_{j}\right)\right]:=\left(m_{2}, r\right] \text {. }
\end{aligned}
$$

Now the fact that $m_{1} \leq-\left(r_{n-1}+k_{n}\right)=-\left(1+\Delta+l_{n}\right)<0$, and $m_{2} \leq-\left(r_{1}+l_{1}\right)=-\left(1+k_{1}\right)<0$, gives $K_{0}=\{0,1, \ldots, r\}=L_{0}$, which proves the first claim.

For the second claim, we now know that $\lambda>r$ means that $\frac{\left(q^{r_{j}+\lambda}\right)_{k_{j+1}}}{\left(q^{r_{j}+\lambda}\right)_{l_{j}}}=\left(q^{r_{j}+l_{j}+\lambda}\right)_{k_{j+1}-l_{j}}$ is non-zero and non-singular. Therefore, the LHS of (16) becomes

$$
\begin{aligned}
&\left(q^{1+\lambda}\right)_{k_{1}}\left(q^{r_{1}+l_{1}+\lambda}\right)_{k_{2}-l_{1}} \ldots\left(q^{r_{n-1}+l_{n-1}+\lambda}\right)_{k_{n}-l_{n-1}}\left[\left(q^{1+\Delta+\lambda}\right)_{l_{n}}\right]^{-1} \\
&=\left(q^{1+\lambda}\right)_{k_{1}+k_{2}-l_{1}}\left(q^{r_{2}+l_{2}+\lambda}\right)_{k_{3}-l_{2}} \ldots\left(q^{r_{n-1}+l_{n-1}+\lambda}\right)_{k_{n}-l_{n-1}}\left[\left(q^{1+\Delta+\lambda}\right)_{l_{n}}\right]^{-1} \\
& \vdots \\
&=\left(q^{1+\lambda}\right)_{\Delta+l_{n}}\left[\left(q^{1+\Delta+\lambda}\right)_{l_{n}}\right]^{-1}=\left(q^{1+\lambda}\right)_{\Delta}=(q)_{\Delta+\lambda}\left[(q)_{\lambda}\right]^{-1}
\end{aligned}
$$

as desired, where we iterate the rule $[2,(\mathrm{I} .17)]$ with $r_{j}+l_{j}=1+k_{1}+\sum_{a=1}^{j-1}\left(k_{a+1}-l_{a}\right)$ to collapse the product in the numerator.

Now we can prove proposition 2 and hence proposition 1.
Proof of Proposition 2. Since $\left(k_{j}, l_{j}\right) \mapsto\left(l_{n+1-j}, k_{n+1-j}\right)$ is a symmetry of (13) we can assume WLOG that $k \geq l$ and define $\Delta=k-l \geq 0$. By lemma 1 we can shift the summation of the RHS of (13) to $\kappa \mapsto \lambda+\Delta$ with $\lambda \geq 0$. Making use of the relations $p_{j+1}+\Delta=r_{j}$ for $j=1, \ldots n-1$, and $p_{1}=1-\Delta$, we have

$$
\begin{align*}
\sum_{\kappa=0}^{\infty} \frac{(y)_{\kappa-k}}{(q)_{\kappa}}\left(q^{p_{1}+\kappa}\right)_{k_{1}} \ldots\left(q^{p_{n}+\kappa}\right)_{k_{n}} z^{\kappa-k} & =\sum_{\lambda=0}^{\infty} \frac{(y)_{\lambda-l}}{(q)_{\lambda+\Delta}}\left(q^{1+\lambda}\right)_{k_{1}}\left(q^{r_{1}+\lambda}\right)_{k_{2}} \ldots\left(q^{r_{n-1}+\lambda}\right)_{k_{n}} z^{\lambda-l} \\
& =\sum_{\lambda=0}^{\infty} \frac{(y)_{\lambda-l}}{(q)_{\lambda}}\left(q^{r_{1}+\lambda}\right)_{l_{1}} \ldots\left(q^{r_{n}+\lambda}\right)_{l_{n}} z^{\lambda-l} \tag{17}
\end{align*}
$$

where the last equality follows from lemma 2.

References

[1] G. E. Andrews. Summations and transformations for basic appell series. Journal of the London Mathematical Society, s2-4(4):618-622, 1972.
[2] G. Gasper and M. Rahman. Basic Hypergeometric Series. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 2 edition, 2004.

