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The purpose of this note is to give a self contained discussion and proof of a charming q-series identity
discovered in a previous project of mine. We first introduce some basic notation. We will use the standard
notation for the finite q-Pochhammer symbol

(x; q)m =


(1− x)(1− qx) . . . (1− qm−1x), m > 0,

1, m = 0,[
(1− q−1x)(1− q−2x) . . . (1− qmx)

]−1
, m < 0,

(1)

aswell as the infinite q-Pochhammer symbol which is defined whenever |q| < 1

(x; q)∞ =

∞∏
n=0

(1− qnx). (2)

Notice that formulas (1) and (2) can be zero or singular when x is an integer power of q. Such cases require
additional care as we will see. In this note we freely use identities for (x; q)n and (x; q)∞ from [2, Appendix
I], and we will adopt the implicit base convention (x)n = (x; q)n and (x)∞ = (x; q)∞.

We can now state the main result:

Proposition 1. Fix any integer n ≥ 1 and non-negative integer tuples k = (k0, k1, . . . , kn) ∈ Nn+1, l =

(l1, . . . , ln) ∈ Nn, and m = (m1, . . . ,mn−1) ∈ Nn−1. Denote k =
∑n

j=0 kj, l =
∑n

j=1 lj, and m =
∑n−1

j=1 mj.
Then for a complex number q with 0 < |q| < 1, and complex parameters y, and z (with 0 < |z| < 1), we have
the following equality:

(y)l+m

(yz)l+m

∑
λ∈Nn

∑
µ∈Nn−1

[
(z)λ+µ

∏n
j=1(q

−lj )λj

∏n−1
j=1 (q

−mj )µj

(q1−l−m/y)λ+µ

∏n
j=1(q)λj

∏n−1
j=1 (q)µj

× q
∑n

j=1 λj(1+kj+
∑j−1

a=1(ka−(la+ma))+
∑n−1

j=1 µj(1+
∑j

a=1(ka−(la+ma))+mj)

]

= zk0
(y)k
(yz)k

∑
κ∈Nn+1

[
(z)κ

∏n
j=0(q

−kj )κj

(q1−k/y)κ
∏n

j=0(q)κj

(q1+k0−k/(yz))κ0q
∑n

j=1 κj(1+kj−
∑n

a=j(ka−(la+ma)))

]
, (3)

where we adopt the same labelling convention κ = (κ0, κ1, . . . , κn) for components of κ as per k. We also

use the shorthand κ =
∑n

j=0 κj, λ =
∑n

j=1 λj and µ =
∑n−1

j=1 µj, as well as the convention mn = 0 wherever
it appears.

We will not give the proof of proposition 1 yet, however, we can immediately note that both sides are
finite sums in light of the (q−a)α terms in the numerators which vanish for α > a. We choose to write infinite
sums to make explicit the connection with q-Lauricella series. To do so succintly, we define two auxilliary
n-tuples of integers r = (rj) and p = (pj) by

rj = 1 +

j∑
a=1

(ka − (la +ma)), pj = 1−
n∑

a=j

(ka − (la +ma)), (4)
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for j = 1, . . . , n (taking mn = 0 as before). Let us also denote by r̂ the (n − 1)-tuple (r1, . . . rn−1), and by
k̃ the (n− 1)-tuple (k1, . . . , kn) for convenience.

Now introduce the type D, q-Lauricella series treated in [1]

Φ
(n)
D [β;α1, . . . , αn; γ; q;x1, . . . , xn] =

∞∑
ν1=0

· · ·
∞∑

νn=0

(β)ν (α1)ν1
. . . (αn)νn

(γ)ν (q)ν1 . . . (q)νn

xν1
1 . . . xνn

n , (5)

where as before we use the notation ν =
∑n

j=1 νj . Using (4), and (5), the equality (3) is written succinctly
as Θk,l,m = Ωk,l,m, where

Θk,l,m =
(y)l+m

(yz)l+m
Φ

(2n−1)
D

[
z; q−l, q−m; q1−l−m/y; q; qr+l+(m,0), qr̂+m

]
, (6)

is the left hand side, and

Ωk,l,m = zk0
(y)k
(yz)k

Φ
(n+1)
D

[
z; q−k; q1−k/y; q; q1+k0−k/(yz), qp+k̃

]
, (7)

is the right hand side. Here we are using element-wise exponentian short hand qx = (qx1 , . . . qxm).
A standard proceedure for dealing with expressions such as (6) and (7) may be to use [1, (4.1)] to

rewrite them in terms of m+1ϕm basic hypergeometric functions (See [2, (1.2.22)]) and work with known
transformation forumlae thereof. This approach is not valid here. For example, applying [1, (4.1)] to (6)
yields

Θk,l,m ∝ 2nϕ2n−1

[
q1−l−m/(yz), qr+l+(m,0), qr̂+m

qr1+m1 , . . . , qrn−1+mn−1 , qrn , qr1 , . . . , qrn−1
; q, z

]
, (8)

which contains denominator arguments of the form qa with a potentially a negative integer. In this case the

m+1ϕm function is undefined and a similar problem occurs with the RHS (7).
Fortunately we do not need the transformation rule [1, (4.1)]; we can settle for the intermediate step

Φ
(n)
D [β;α; γ; q;x] =

(β)∞
(γ)∞

∞∑
a=0

(γ/β)a
(q)a

βa
n∏

j=1

 ∞∑
νj=1

(αj)νj

(q)νj

(xjq
a)νj

 . (9)

In [1] the bracketed sums are evaluated using the infinite summation identity for 1ϕ0[α; q, x] [2, (II.3)],
however, in our case these sums are terminating since αj is always a negative integer power of q. We
therefore apply the finite summation identity [2, (II.4)]

1ϕ0[q
−m; q, x] =

∞∑
n=0

(q−m)n
(q)n

xn = (xq−m)m. (10)

Combining formulae (9) and (10) we obtain

Θk,l,m =
(y)l+m

(yz)l+m

(z)∞
(q1−l−m/y)∞

∞∑
λ=0

(q1−l−m/(yz))λ
(q)λ

(qrn+λ)lnz
λ
n−1∏
j=1

(qrj+mj+λ)lj (q
rj+λ)mj

=
(z)∞
(q/y)∞

(y)l+m

(yz)l+m

(
(q1−l−m/(yz))l+m

(q1−l−m/y)l+m
zl+m

) ∞∑
λ=0

(q/(yz))λ−l−m

(q)λ

 n∏
j=1

(qrj+λ)lj+mj

 zλ−l−m

=
(z)∞
(q/y)∞

∞∑
λ=0

(q/(yz))λ−l−m

(q)λ

 n∏
j=1

(qrj+λ)lj+mj

 zλ−l−m, (11)
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for the LHS, where again we understand mn = 0, and

Ωk,l,m = zk0
(y)k
(yz)k

(z)∞
(q1−k/y)∞

∞∑
κ=0

(q1−k/(yz))κ
(q)κ

(q1+κ−k/(yz))k0

 n∏
j=1

(qpj+κ)kj

 zκ

=

(
zk0

(yqk−k0)k0

(yzqk−k0)k0

(q1−k/(yz))k0

(q1−k/(y))k0

)
(y)k−k0

(yz)k−k0

(z)∞
(q1−(k−k0)/y)∞

∞∑
κ=0

(q1−(k−k0)/(yz))κ
(q)κ

 n∏
j=1

(qpj+κ)kj

 zκ

=
(y)k−k0

(yz)k−k0

(
(q1−(k−k0)/(yz))k−k0

(q1−(k−k0)/(y))k−k0

zk−k0

)
(z)∞
(q/y)∞

∞∑
κ=0

(q/(yz))κ−(k−k0)

(q)κ

 n∏
j=1

(qpj+κ)kj

 zκ−(k−k0)

=
(z)∞
(q/y)∞

∞∑
κ=0

(q/(yz))κ−(k−k0)

(q)κ

 n∏
j=1

(qpj+κ)kj

 zκ−(k−k0), (12)

for the RHS. It follows from these expressions that both Θk,l,m and Ωk,l,m are independent of k0, and depend
on li and mi, only in the combinations li+mi (both of these facts are necessary for (3) to hold). By cancelling
the prefactors in (11) and (12), and relabelling li +mi 7→ li for i = 1, . . . , n− 1, k − k0 7→ k =

∑n
j=1 kj and

q/(yz) 7→ y, to better reflect the dependence, we have reduced the equality Θk,l,m = Ωk,l,m to the following.

Proposition 2. For any integer n ≥ 1, complex parameter q, such that 0 < |q| < 1, complex parameters y
and z (with 0 < |z| < 1), and non-negative integer tuples l = (lj) ∈ Zn

≥0 and k = (kj) ∈ Zn
≥0 (j = 1, . . . , n),

we have the following equality

∞∑
λ=0

(y)λ−l

(q)λ
(qr1+λ)l1 . . . (q

rn+λ)lnz
λ−l =

∞∑
κ=0

(y)κ−k

(q)κ
(qp1+κ)k1

. . . (qpn+κ)kn
zκ−k, (13)

where k =
∑n

j=1 kj, l =
∑n

j=1 lj, and pj and rj are as per (4) (with (la +ma) 7→ la).

By comparison of the tail of both sides in (13) (λ > l and κ > k for the LHS and RHS respectively)
with the series 1ϕ0[y; q, z] we have absolute convergence. The proof of proposition 2 requires two technical
lemmas.

Lemma 1. With k, l, k, l, and pj as per proposition 2, suppose that k ≥ l and define ∆ = k − l ≥ 0. Then
for any integer 0 ≤ κ ≤ ∆− 1 we have

(qp1+κ)k1 . . . (q
pn+κ)kn = 0. (14)

Proof. It suffices to show that for any 0 ≤ κ ≤ ∆−1, there exists j such that pj +κ ≤ 0 and pj +κ+kj > 0,
that is, {0, 1, . . . ,∆− 1} ⊂ U where U =

⋃n
j=1(−(pj + kj),−pj ]. Since −(pj + kj) = −(pj+1 + lj) ≤ −pj+1

(for j = 1, . . . , n− 1), it follows that U is an overlapping union of intervals giving

U =

(
n

min
j=1

(−(pj + kj)),
n

max
j=1

(−pj)

]
:= (m, p].

Now note that p ≥ −p1 = ∆− 1 and m ≤ −(pn + kn) = −(1 + ln) < 0 so we are done.

Lemma 2. With k, l, k, l, and rj as per proposition 2, suppose that k ≥ l and define ∆ = k − l ≥ 0. Then
for any integer λ ≥ 0 we have

(qr1+λ)k2
. . . (qrn−1+λ)kn

= 0, ⇔ (qr1+λ)l1 . . . (q
rn−1+λ)ln−1

= 0, ⇔ λ ≤ r :=
n−1
max
j=1

(−rj). (15)

Furthermore, for any integer λ > r we have

(q1+λ)k1
(qr1+λ)k2

. . . (qrn−1+λ)kn

(qr1+λ)l1 . . . (q
rn+λ)ln

=
(q)λ+∆

(q)λ
. (16)
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Proof. For the first claim define K0 = {λ ∈ Z≥0 | (qr1+λ)k2 . . . (q
rn−1+λ)kn = 0} and similarly define

L0 = {λ ∈ Z≥0 | (qr1+λ)l1 . . . (q
rn−1+λ)ln−1 = 0}. Clearly λ ∈ K0, if and only if there is some 1 ≤ j ≤ n− 1

such that kj+1 > −(rj + λ) ≥ 0, giving L0 =
(⋃n−1

j=1 (−(rj + kj+1),−rj ]
)
∩ Z≥0. Similarly, one can find

that L0 =
(⋃n−1

j=1 (−(rj + lj),−rj ]
)
∩ Z≥0. These unions of intervals are overlapping since −(rj + kj+1) =

−(rj+1 + lj+1) ≤ −rj+1 and −(rj + lj) = −(rj−1 + kj) ≤ −rj−1, for j = 1, . . . n − 2 and j = 2, . . . n − 1
respectively, therefore

n−1⋃
j=1

(−(rj + kj+1),−rj ] =

(
n−1
min
j=1

(−(rj + kj+1)),
n−1
max
j=1

(−rj)

]
:= (m1, r],

n−1⋃
j=1

(−(rj + lj),−rj ] =

(
n−1
min
j=1

(−(rj + lj)),
n−1
max
j=1

(−rj)

]
:= (m2, r].

Now the fact that m1 ≤ −(rn−1 + kn) = −(1 + ∆ + ln) < 0, and m2 ≤ −(r1 + l1) = −(1 + k1) < 0, gives
K0 = {0, 1, . . . , r} = L0, which proves the first claim.

For the second claim, we now know that λ > r means that
(qrj+λ)kj+1

(qrj+λ)lj
= (qrj+lj+λ)kj+1−lj is non-zero

and non-singular. Therefore, the LHS of (16) becomes

(q1+λ)k1
(qr1+l1+λ)k2−l1 . . . (q

rn−1+ln−1+λ)kn−ln−1

[
(q1+∆+λ)ln

]−1

=(q1+λ)k1+k2−l1(q
r2+l2+λ)k3−l2 . . . (q

rn−1+ln−1+λ)kn−ln−1

[
(q1+∆+λ)ln

]−1

...

= (q1+λ)∆+ln

[
(q1+∆+λ)ln

]−1
= (q1+λ)∆ = (q)∆+λ [(q)λ]

−1
,

as desired, where we iterate the rule [2, (I.17)] with rj+ lj = 1+k1+
∑j−1

a=1(ka+1− la) to collapse the product
in the numerator.

Now we can prove proposition 2 and hence proposition 1.

Proof of Proposition 2. Since (kj , lj) 7→ (ln+1−j , kn+1−j) is a symmetry of (13) we can assume WLOG that
k ≥ l and define ∆ = k − l ≥ 0. By lemma 1 we can shift the summation of the RHS of (13) to κ 7→ λ+∆
with λ ≥ 0. Making use of the relations pj+1 +∆ = rj for j = 1, . . . n− 1, and p1 = 1−∆, we have

∞∑
κ=0

(y)κ−k

(q)κ
(qp1+κ)k1

. . . (qpn+κ)kn
zκ−k =

∞∑
λ=0

(y)λ−l

(q)λ+∆
(q1+λ)k1

(qr1+λ)k2
. . . (qrn−1+λ)kn

zλ−l

=

∞∑
λ=0

(y)λ−l

(q)λ
(qr1+λ)l1 . . . (q

rn+λ)lnz
λ−l, (17)

where the last equality follows from lemma 2.
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