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The purpose of this note is to give a self contained discussion and proof of a charming g-series identity
discovered in a previous project of mine. We first introduce some basic notation. We will use the standard
notation for the finite g-Pochhammer symbol

(1-2)(1—-qz)...(1 — g™ o), m > 0,
(T3 0)m =<1, m =0, (1)
[(1—¢ ) (1—q22)...(1—¢qmz)] ", m<0,

aswell as the infinite g-Pochhammer symbol which is defined whenever |¢| < 1
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(#50)00 = [J(1 = ¢"). (2)

n=0

Notice that formulas (1) and (2) can be zero or singular when z is an integer power of ¢g. Such cases require
additional care as we will see. In this note we freely use identities for (z;q), and (z;¢)s from [2, Appendix
1], and we will adopt the implicit base convention (z), = (;¢)n and (2)e = (Z;¢)oo-

We can now state the main result:

Proposition 1. Fir any integer n > 1 and non-negative integer tuples k = (ko,ki,...,k,) € N*TL [ =
(I1,...,ln) €N, and m = (m1,...,mn,_1) € N*"L. Denote k = Z?:o kj, 1= 2?21 lj, and m = Z;;ll m;.

Then for a complex number g with 0 < |q| < 1, and complex parameters y, and z (with 0 < |z|] < 1), we have
the following equality:
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where we adopt the same labelling convention & = (Ko, K1, ..., kn) for components of k as per k. We also

use the shorthand k = Z?:o Kj, A= 2?21 Ajand p= Z;lz_ll 1y, as well as the convention m, = 0 wherever
it appears.

We will not give the proof of proposition 1 yet, however, we can immediately note that both sides are
finite sums in light of the (¢~), terms in the numerators which vanish for & > a. We choose to write infinite
sums to make explicit the connection with g-Lauricella series. To do so succintly, we define two auxilliary
n-tuples of integers r = (r;) and p = (p;) by

rj = 1+Z(ka*(la+ma))v pj = 172('1% — (la +ma)), (4)

a=1 a=j



for j =1,...,n (taking m, = 0 as before). Let us also denote by 7 the (n — 1)-tuple (ry,...r,_1), and by
k the (n — 1)-tuple (k1,...,ky) for convenience.
Now introduce the type D, g-Lauricella series treated in [1]

n \Cn)v, 1y Un
<I>§))[ﬁ;al,...,an;v;q;ml,..., Z Z - (an) oo, (5)

where as before we use the notation v = 2?21 vj. Using (4), and (5), the equality (3) is written succinctly
as Ok 1,m = Qg 1,m, Where
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is the left hand side, and

Y)k n _ _ _ L
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is the right hand side. Here we are using element-wise exponentian short hand ¢® = (¢**,...¢*™).

A standard proceedure for dealing with expressions such as (6) and (7) may be to use [1, (4.1)] to
rewrite them in terms of ,,,11¢,, basic hypergeometric functions (See [2, (1.2.22)]) and work with known
transformation forumlae thereof. This approach is not valid here. For example, applying [1, (4.1)] to (6)

yields
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which contains denominator arguments of the form ¢® with a potentially a negative integer. In this case the
m+1¢@m function is undefined and a similar problem occurs with the RHS (7).
Fortunately we do not need the transformation rule [1, (4.1)]; we can settle for the intermediate step
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In [1] the bracketed sums are evaluated using the infinite summation identity for 1¢o[a;q,x] [2, (I1.3)],

however, in our case these sums are terminating since o is always a negative integer power of g. We

therefore apply the finite summation identity [2, (II.4)]
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Combining formulae (9) and (10) we obtain
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for the LHS, where again we understand m,, = 0, and
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for the RHS. It follows from these expressions that both O j m and Qg ;1 », are independent of £y, and depend
on l; and m;, only in the combinations I;+m; (both of these facts are necessary for (3) to hold). By cancelling
the prefactors in (11) and (12), and relabelling l; +m; = l; for i = 1,...,n — 1, k — ko > k = >7_, k; and
q/(yz) — y, to better reflect the dependence, we have reduced the equality O 1 m = Qg.i,m to the following.

Proposition 2. For any integer n > 1, complex parameter q, such that 0 < |q| < 1, complex parameters y
and z (with 0 < |z| < 1), and non-negative integer tuples l = (I;) € Z%, and k = (kj) € Z%, (j =1,...,n),
we have the following equality
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where k = ZJ ki 1= Z] 11, and p; and v are as per (4) (with (lg +mq) = o).
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By comparison of the tail of both sides in (13) (A > [ and £ > k for the LHS and RHS respectively)
with the series 1¢g[y; ¢, 2] we have absolute convergence. The proof of proposition 2 requires two technical
lemmas.

Lemma 1. With k,1,k,l, and p; as per proposition 2, suppose that k > 1 and define A =k —1>0. Then
for any integer 0 < k < A — 1 we have

(@ iy - (@), = 0. (14)

Proof. It suffices to show that for any 0 < x < A —1, there exists j such that p; +x <0 and p; +k+k; > 0,
that is, {0,1,...,A — 1} C U where U = Jj_,(—(p; + k;), —p;]. Since —(p; +k;) = —(pj+1 +1;) < —pjs1
(for j =1,...,n—1), it follows that U is an overlapping union of intervals giving

0 = (05 -+ k). i) | o= o5l

Now note that p > —p; = A —1 and m < —(p, + k) = —(1 4+ {,,) < 0 so we are done. O

Lemma 2. With k,1,k,l, and v; as per proposition 2, suppose that k > 1 and define A =k —1>0. Then
for any integer A > 0 we have
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Furthermore, for any integer A > r we have
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Proof. For the first claim define Ky = {\ € Z>q | (¢""")k, ... (g™ ")k, = 0} and similarly define
Lo={N€Zso | ("), ... (¢"FN),,_, =0}. Clearly A € Ky, if and only if there is some 1 < j <n —1
such that kjy1 > —(r; + ) > 0, giving Ly = (U;:ll(—(rj +kjt1), —rj]) N Z>p. Similarly, one can find
that Lo = (U?:_ll(f(rj +15), frj]> N Z>o. These unions of intervals are overlapping since —(rj + kj11) =
—(’I“j+1 + lj+1) < —Tj+1 and —(Tj + l]) = —(Tj_l + k‘]) < —Trj—1, fOI‘j =1,...n—2 and j=2,...n—1
respectively, therefore

n—1 n_1 _
U (=5 + ki), =] = (I}l_igl(—(’“j + kj+1))>r§1_34{’((_7"j)} = (ma, 7],

j=1
n—1 nei L -
JL:JI(_(Tj +1), =7l = <m n(—(rj + lj)),rglai((—rj):| = (ma, ).

Now the fact that mqy < —(rp—1+kn) = —-(1+A+1,) <0, and ma < —(r1 +11) = —(1 4+ k1) < 0, gives
Ky=1{0,1,...,7} = Lo, which proves the first claim.

i

For the second claim, we now know that A > r means that % = (¢" 5t )k, 1, is non-zero

J
and non-singular. Therefore, the LHS of (16) becomes
—1
(@) (@ )ty (g (@]
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= (") at, [(CIHAH)ln]_l = (¢""Ma = (@) am (@],

as desired, where we iterate the rule [2, (I.17)] with 7, +1; = 1+k; JFZZ:(]%H —1,) to collapse the product
in the numerator. O

Now we can prove proposition 2 and hence proposition 1.

Proof of Proposition 2. Since (kj,l;) = (ln41—j, knt1—;) is a symmetry of (13) we can assume WLOG that
k > 1 and define A = k — [ > 0. By lemma 1 we can shift the summation of the RHS of (13) to kK — A+ A
with A > 0. Making use of the relations pj41 + A =r; for j=1,...n—1,and p; =1 - A, we have

A—l —
WL () (o 7,

kn Z

o

i (Y)rn—k @V, - (@), Sk .. (g

=0 (@« =0 (@)rta
- (Y)r—1 r r _
=2 T @ (17)
A=0
where the last equality follows from lemma 2. O
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