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1 Hopf Ideals and Quotients

When working with familiar algebraic objects (groups, rings, algebras, and vector spaces) a natural thing
one may wish to consider are quotients of said objects, which comes with a universal mapping property.
In order to define quotients of objects we need some notion of an ideal (normal subgroup, subspace etc).
This process is again possible for Hopf algebras, however, we note that as algebraic structures become more
complex so to do notions of their ideals.

Suppose that H = (H, η, µ, ε,∆) is a Hopf algebra with antipode S. We say that a vector subspace
I ⊂ H, is a Hopf ideal if it is:

1. a two-sided algebra ideal for the algebra (H, η, µ), that is,

µ(H ⊗ I) ⊂ I, µ(I ⊗H) ⊂ I, (1.1)

2. a coideal for the coalgebra (H, ε,∆), that is,

∆(I) ⊂ I ⊗H +H ⊗ I, ε|I = 0, (1.2)

3. antipode invariant, that is,
S(I) ⊂ I. (1.3)

If I ⊂ H is a Hopf ideal we will write I C H. As is the case with notions of ideals on more familiar objects,
the kernels of Hopf algebra homomorphisms are Hopf ideals as we now show:

Let f : H → H ′ be a Hopf algebra homorphism and denote the vector subpace ker(f) ⊂ H by I (we
will denote structural maps on H ′ with an apostrophe). Conditions (1.1), (1.2) and (1.3) are all basically
immediate from the definitions of a Hopf algebra homomorphism. For (1.1) we note that for a ∈ H,x ∈ I
we have f(µ(a ⊗ x)) = µ′(f(a) ⊗ f(x)) = µ′(f(a) ⊗ 0) = 0 and likewise f(µ(x ⊗ a)) = 0. For (1.2) since
ε = ε′ ◦ f the second condition is immediate. Similarly for x ∈ I, f ⊗ f(∆(x)) = ∆(f(x)) = 0 which is only
possible if ∆(x) ∈ I ⊗H +H ⊗ I. Finally, antipode invariance is clear from the condition f ◦ S = S′ ◦ f .

We have now seen that the kernels of Hopf algebra homomorphisms are Hopf ideals. Now let us consider
the converse question; given a Hopf ideal I C H, can we find a homomorphism f : H → H ′ such that the
kernel of f is exactly I? Of course in order to achieve this we need to find not only the map f but also the
Hopf algebra H ′. This is exactly what leads us to define the quotient of a Hopf algebra.

Let I C H be a Hopf ideal and let H/I be the vector space quotient, that is, the set of equivalence classes
x + I. We then equip the quotient space H/I with a Hopf algebra structure (H/I, η̃, µ̃, ε̃, ∆̃) and antipode
S̃ defined by

η̃(c) = η(c) + I, µ̃((x+ I)⊗ (y + I)) = µ(x⊗ y) + I, (1.4)

ε̃(x+ I) = ε(x), ∆̃(x+ I) =
∑
(x)

(x(1) + I)⊗ (x(2) + I), (1.5)

S̃(x+ I) = S(x) + I (1.6)
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The fact that ε̃ and S̃ are well defined is clear using x+ I = y+ I ⇔ x− y ∈ I. Then by (1.2) ε acts trivially
on x− y giving ẽ(x+ I) = ẽ(y+ I), and similarly S(x− y) ∈ I meaning exactly S̃(x+ I) = S̃(y+ I). To see
that µ̃ is well defined in its first slot suppose that x+ I = x′ + I. Then since x− x′ ∈ I it follows that

µ̃((x+ I)⊗ (y + I))− µ̃((x′ + I)⊗ (y + I)) = µ((x− x′)⊗ y) + I
(1.1)
= 0 + I

⇒ µ̃((x+ I)⊗ (y + I)) = µ̃((x′ + I)⊗ (y + I)). (1.7)

It is then immediate that µ̃ is well defined in its second slot by taking µ = µop. Finally, to see that ∆(x+ I)
is well defined suppose that x+ I = y + I ⇔ x− y ∈ I. Then expanding ∆(x− y) using swindler notation,
it follows from property (1.2) that in each summand either (x− y)(1) ∈ I or (x− y)(2) ∈ I, meaning at least
one component of each summand in the expansion of ∆̃(x − y + I) belongs to the equivalence class 0 + I.
Thus by linearity ∆̃(x− y + I) = 0 + I ⇔ ∆̃(x+ I) = ∆̃(y + I) as desired.

We should also check that (H/I, η̃, µ̃, ε̃, ∆̃) with antipode S̃ obey the Hopf algebra axioms, although this
is almost immediate since it was true for H = (H, η, µ, ε,∆). For example we check the defining property of
the antipode

µ̃ ◦ (S̃ ⊗ id) ◦ ∆̃(x+ I) = µ̃

(∑
(x)

(S(x(1)) + I)⊗ (x(2) + I)

)
= µ

(∑
(x)

S(x(1))⊗ x(2)
)

+ I = η(ε(x)) + I = η̃ ◦ ε̃(x+ I).

(1.8)

We now return to the question of finding a homomorphism f : H → H ′ with a kernel of I C H to find
that all the work has been done. For given I C H, denote by π : H → H/I the canonical project map
x 7→ x+ I. The definitions (1.4)-(1.6) are exactly what it means for π to be a homomorphism. Now observe
that

x ∈ ker(π)⇔ π(x) = x+ I = 0 + I ⇔ x ∈ I, (1.9)

thus the kernel of π is exactly I as desired.
To conclude this section we mention the universal property of quotients. Suppose that f : H → H ′ is a

Hopf algebra homomorphism. Then for any Hopf ideal H B I ⊂ ker(f), there exists a unique homomorphism
f̃ : H/I → H ′ such that f = π ◦ f̃ . This is perhaps best understood by the following commutative diagram.

H H ′

H/I, (I ⊂ ker(f))

π

f

∃!f̃
(1.10)

The map f̃ is defined by x + I 7→ f(x) and is manifestly unique from the diagram. The fact that it is well
defined is checked easily using the property that I ⊂ ker(f), and the fact that it is a homomorphism is
checked easily using the fact that f is a homomorphism. For example we show it respects multplication as
follows

f̃ ◦µ̃((x+I)⊗(y+I)) = f̃(µ(x⊗y)+I) = f(µ(x⊗y)) = µ′(f̃(x)⊗f̃(y)) = µ′◦(f⊗f)((x+I)⊗(y+I)). (1.11)

2 The Algebra Uq(sl2)

In this section we return to our study of the quantum group Uq(sl2) when q is a root of unity. We will show
that in this case it has a finite dimensional quotient which is quasitriangular and from its representation
theory, we will construct a solution to the Yang-Baxter equation. However, before this we will take a detour
to prove a helpful result.
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2.1 q-Binomial Theorem

Before we show that Uq(sl2) has a finite dimensional quotient, it will be useful to prove a generalisation of
the binomial theorem. To do this we define the q-integer, JnKq, the q-factorial, JnKq!, and the q-binomial
coefficient, J nk Kq, as follows

JnKq =
1− qn

1− q
= 1 + q + · · ·+ qn−1, JnKq! = J1KqJ2Kq . . . JnKq,

s
n
k

{
q

=
JnK!qJkK!qJn− kK!q , (2.1)

for some scalar parameter q (generally a complex number), and n a non-negative integer. We will note the
following special cases:

J0Kq = 0, J1Kq = 1, J1Kq! = J0Kq! = 1,

s
n
0

{
q

=

s
n
n

{
q

= 1, for all n. (2.2)

The q-binomial theorem now says that for an algebra A over a field K with elements a, b ∈ A satisfying
ab = qba for some q ∈ K, the following holds

(a+ b)n =
n∑
j=0

s
n
j

{
q

bjan−j . (2.3)

This is easily verified by induction. The base case n = 1 is clear using the fourth identity in (2.2). Now we
suppose that (2.3) holds for all n < k for some k > 1 and observe

(a+ b)k = (a+ b)(a+ b)k−1 =

k−1∑
j=0

s
k − 1
j

{
q

(a+ b)bjak−1−j

=

k−1∑
j=0

s
k − 1
j

{
q

qjbjak−j +

k−1∑
j=0

s
k − 1
j

{
q

bj+1ak−(j+1) (Use ab = qba)

= ak +

k−1∑
j=1

(
qj

s
k − 1
j

{
q

+

s
k − 1
j − 1

{
q

)
bjak−j + bk

= ak +

k−1∑
j=1

s
k
j

{
q

bjak−j + bk =

k∑
j=0

s
k
j

{
q

bjak−j , (2.4)

where in the last line we used the following identity

qj
s
n− 1
j

{
q

+

s
n− 1
j − 1

{
q

=
Jn− 1K!qJkK!qJn− kK!q

(
qjJn− jKq + JjKq) =

Jn− 1K!qJkK!qJn− kK!q
(
qj(1− qn−j) + 1− qj

1− q

)
=

Jn− 1K!qJkK!qJn− kK!q
(

1− qn

1− q

)
=

Jn− 1K!qJnKJkK!qJn− kK!q =

s
n
j

{
q

. (2.5)

Let us now explore an important consequence of (2.3). Suppose that q is a root of unity and let e be the
smallest positive integer such that qe = 1. It is then clear that JneKq = 0 for any n ∈ N and that JlK!q = 0 if
and only if l ≥ e. It thus follows that s

e
n

{
q

= 0, for any 0 < n < e. (2.6)

We do require that n 6= 0 or e since in this case the fourth identity in (2.2) still holds (as an indeterminate
limit). A consequence of (2.6) and (2.3) is that if ab = qba where q is a primitive e-th root of unity, then we
have

(a+ b)e
(2.3)
=

e∑
j=0

s
e
j

{
q

bjae−j
(2.6)
= ae + be. (2.7)
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2.2 A Quotient of Uq(sl2)

We recall briefly that for a complex parameter q ∈ C Uq(sl2) is the Hopf algebra generated by E,F,K, and
K−1 with the relations

KK−1 = K−1K = 1, KEK−1 = q2E, KFK−1 = q−2F, [E,F ] =
K −K−1

q − q−1
. (2.8)

The coproduct, ∆, and counit, ε, are as follows

∆(E) = E ⊗K + 1⊗ E, ∆(K) = K ⊗K, ∆(F ) = F ⊗ 1 +K−1 ⊗ F, (2.9)

ε(K) = 1, ε(E) = ε(F ) = 0, (2.10)

which uniquely determine the antipode, S,

S(K) = K−1, S(E) = −EK−1, S(F ) = −KF. (2.11)

Now suppose that q is a root of unity and that e is the smallest number such that qe ∈ {1,−1}. Now let
I be the two sided algebra ideal generated by Ee, F e, and Ke − 1. Let us show that I is a Hopf ideal. The
property ε|I = 0 is almost immediate and not particular to the root of unity case

ε(Ee) = ε(E)e = 0 = ε(F )e = ε(F e), ε(Ke − 1) = ε(K)e − ε(1) = 1− 1 = 0. (2.12)

Similarly, antipode invariance is almost as immediate and again does not rely on q being a root of unity

S(Ke − 1) = S(K)e − S(1) = K−e − 1 = −K−e(Ke − 1) ∈ I, (2.13)

S(Ee) = S(E)e = (−EK−1)e = (−1)e(EK−1EK−1 . . . EK−1)
(2.8)
= (−1)eqe(e+1)K−eEe ∈ I, (2.14)

S(F e) = S(F )e = (−KF )e = (−1)e(KFKF . . .KF )
(2.8)
= (−1)eqe(e−1)KeF e ∈ I, (2.15)

as is the case with the relation ∆(I) ⊂ I ⊗H +H ⊗ I for the generator Ke − 1

∆(Ke − 1) = ∆(K)e −∆(1) = Ke ⊗Ke − 1⊗ 1 = (Ke − 1)⊗Ke + 1⊗ (Ke − 1) ∈ I ⊗H +H ⊗ I. (2.16)

We now finally require the assumption that q is a root of unity to show the first condition in (1.2) is also
true for Ee and F e. Let us remark that with the given assumptions that q is a root of unity and e is the
smallest positive integer such that qe ∈ {1,−1}, it must be the case that q2 is a primitve e-th root of unity.
This follows from a simple contradiction argument. Suppose that q2 is not a primitive e-th root of unity.
Since it is necessarily an e-th root of unity, we must have some n < e such that q2n = 1. Minimality of e
means that 2n > e so write 2n = e+ k for some 0 < k < e, which says that

1 = q2n = qe+k = ±qk, (2.17)

contradicting the minimality of e. Since q2 is a primitive e-th root of unity it follows that so too is q−2. We
now observe that

∆(Ee) = ∆(E)e = (E ⊗K + 1⊗ E)e
(2.7)
= Ee ⊗Ke + 1⊗ Ee ∈ I ⊗H +H ⊗ I,

∆(F e) = ∆(F )e = (F ⊗ 1 +K−1 ⊗ F )e
(2.7)
= F e ⊗ 1 +K−e ⊗ F e ∈ I ⊗H +H ⊗ I, (2.18)

where the formula (2.7) applies since

(E ⊗K)(1⊗ E) = E ⊗KE = q2(E ⊗ EK) = q2(1⊗ E)(E ⊗K), (2.19)

(F ⊗ 1)(K−1 ⊗ F ) = FK−1 ⊗ F = q−2(K−1F ⊗ F ) = q−2(K−1 ⊗ F )(F ⊗ 1), (2.20)

and q2 and q−2 are primitive e-th roots of unity.

Now that we have shown that I is a Hopf ideal, let us consider the quotient Hopf algebra Ũq(sl2) ≡
Uq(sl2)/I. We will construct a basis for Ũq(sl2) by projecting a basis for Uq(sl2) and removing redundancies.
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Let EnKmF l ∈ Uq(sl2) be a Poincaré-Birkhoff-Witt basis element. Under projection it is sent to EnKmF l+

I ∈ Ũq(sl2). If n > e or l > e we have EnKmF l ∈ I or EnKmF l + I = 0 + I, so we can restrict to the case
0 ≤ n, l ≤ e− 1. Now observe the following

EnKmF l + I = EnKmF l + EnKm(Ke − 1)F l + I = EnKm+eF l + I. (2.21)

By repeatedly applying the above relation, we see that we can reduce any power of K to its remainder

modulo e. Thus the set B = {EnKmF l | 0 ≤ n,m, l ≤ e− 1} is a spanning set for Ũq(sl2) under projection
π. To be sure that π(B) is a basis, i.e. that we have removed all redundancies, it will be enough to show that
Span(B) ∩ I = {0}. This is immediately clear since Span(B) does not contain appropriately large enough
powers of E and F , and powers of K can differ by at most e − 1 so no element in Span(B) can factor

as a(Ke − 1)b. Thus Ũq(sl2) is an e3-dimensional (an thus finite dimensional) quotient of Uq(sl2). Now
the formalitites are covered we note that we can arrive at this quotient by simply imposing the relations
Ee = F e = 0 and Ke = 1.

2.3 Solution to Yang-Baxter Equation

In this section we will show that the quotient Hopf algebra Ũq(sl2) we saw in the previous section has a
quasitriangular structure by giving an explicit formula for the R-matrix and then from its representation
theory we construct a solution to the Yang-Baxter equation. Before we get into calculations we mention that

instead of writing x + I for an element of Ũq(sl2), which is cumbersome, we will abuse notation and write
simply x instead leaving the projection implicit. With this notation, quotienting by I will simply impose
the relations Ee = F e = 0 and Ke = 1.

As in [1] we claim that the following is a universal R-matrix for Ũq(sl2)

R =
1

e

e−1∑
i,j,k=0

(q − q−1)k

[k]q!
qk(k−1)/2+2k(i−j)−2ijEkKi ⊗ F kKj , (2.22)

where as in the main report we use the notation [n]q = (qn − q−n)/(q − q−1) = q1−nJnKq2 and [n]q! =

[1]q[2]q . . . [n]q = q−k(k−1)/2JnKq2 !. For convenience we make the following definition

ci,j,k :=
1

e

(q − q−1)k

[k]q!
qk(k−1)/2+2k(i−j)−2ij . (2.23)

Now let us provide some justification for the claim that (2.22) is a universal R-matrix. First we will show
that R satisfies the braiding condition ∆op(a)R = R∆(a), for the generators a = K and a = E. This is
clear for K since ∆(K) = ∆op(K) = K ⊗K and this commutes with (2.22) since commuting a K with the
factor EkKi in the first slot we pick up a factor q±2k and commuting with the factor F kKj in the second
slot we pick up its inverse q∓2k. Now for E observe

∆op(E)R = (E ⊗ 1 +K ⊗ E)R =

e−1∑
i,j,k=0

ci,j,k
(
Ek+1Ki ⊗ F kKj +KEkKi ⊗ EF kKj

)
=

e−1∑
i,j,k=0

ci,j,k
(
Ek+1Ki ⊗ F kKj + q2kEkKi+1 ⊗ EF kKj

)
(2.24)

R∆(E) = R(E ⊗K + 1⊗ E) =

e−1∑
i,j,k=0

ci,j,k
(
EkKiE ⊗ F kKj+1 + EkKi ⊗ F kKjE

)
=

e−1∑
i,j,k=0

ci,j,k
(
q2iEk+1Ki ⊗ F kKj+1 + q2jEkKi ⊗ F kEKj

)
=

e−1∑
i,j,k=0

ci,j,kq
2iEk+1Ki ⊗ F kKj+1 +

e−2∑
i=−1

e−1∑
j,k=0

ci+1,j,kq
2jEkKi+1 ⊗ F kEKj (2.25)
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We now use the fact that ci,j,k = ci+e,j,k and that K0 = 1 = Ke to change the i = −1 term in the second
term in (2.25) to be a i = e − 1 term. Noting this, and the fact that q2jci+1,j,k = q2kci,j,k the difference
becomes

∆op(E)R−R∆(E) =

e−1∑
i,j,k=0

(
ci,j,kE

k+1Ki ⊗ F kKj + ci+1,j,kq
2jEkKi+1 ⊗ EF kKj

)
−

e−1∑
i,j,k=0

(
ci,j,kq

2iEk+1Ki ⊗ F kKj+1 + ci+1,j,kq
2jEkKi+1 ⊗ F kEKj

)
=

e−1∑
i,j,k=0

(
ci,j,k

(
Ek+1Ki ⊗ F kKj − q2iEk+1Ki ⊗ F kKj+1

)
+ ci+1,j,kq

2jEkKi+1 ⊗ [E,F k]Kj
)

=

e−1∑
i,j,k=0

(
(ci,j,k − q2ici,j−1,k)Ek+1Ki ⊗ F kKj + ci,j,kq

2jEkKi ⊗ [E,F k]Kj
)

=

e−1∑
i,j,k=0

(
(ci,j,k − q−2kci,j−2,k)Ek+1Ki ⊗ F kKj + ci,j,kq

2jEkKi ⊗ [E,F k]Kj
)

(2.26)

where in the second last line, we have used the modulo e invariance of coefficients ci,j,k in i and j and the
cyclic property of powers of K to shift sums without consequence, and in the last line we used the identity
q2ici,j,k = q−2kci,j−1.k. Now recall from the main report (equation (3.4)), the following commutator

[E,Fm] = [m]q
(qm−1K − q1−mK−1)

q − q−1
Fm−1 = [m]qF

m−1 (q1−mK − qm−1K−1)

q − q−1
. (2.27)

Now noting the following identity

[k]q
q − q−1

ci,j,k =
[k]q

q − q−1

(
1

e

(q − q−1)k

[k]q!
qk(k−1)/2+2k(i−j)−2ij

)
=

1

e

(q − q−1)k−1

[k − 1]q!
qk(k−1)/2+2k(i−j)−2ij

= q2(i−j)+(k−1)
(

1

e

(q − q−1)k−1

[k − 1]q!
q(k−2)(k−1)/2+2(k−1)(i−j)−2ij

)
= q2(i−j)+(k−1)ci,j,k−1, (2.28)

putting equation (2.27) into (2.26) gives

∆op(E)R−R∆(E) =

e−1∑
i,j,k=0

(
(ci,j,k − q−2kci,j−2,k)Ek+1Ki ⊗ F kKj

+ ci,j,k−1q
2i+(k−1)EkKi ⊗ F k−1(q−(k−1)K − qk−1K−1)Kj

)
=

e−1∑
i,j,k=0

(
(ci,j,k − q−2kci,j−2,k)Ek+1Ki ⊗ F kKj + ci,j,kq

2i+kEk+1Ki ⊗ F k(q−kKj+1 − qkKj−1)

)
(?)

=

e−1∑
i,j,k=0

(
(ci,j,k − q−2kci,j−2,k)Ek+1Ki ⊗ F kKj + (ci,j−1,kq

2i − ci,j+1,kq
2i+2k)Ek+1Ki ⊗ F kKj

)

=

e−1∑
i,j,k=0

(
(ci,j,k − q−2kci,j−2,k)Ek+1Ki ⊗ F kKj + (ci,j−2,kq

−2k − ci,j,k)Ek+1Ki ⊗ F kKj

)
= 0, (2.29)

where in the line marked (?) we shifted the index k 7→ k + 1 in the second term since the k = 0 term in
the previous line vanished (clear from (2.26)), and the k = e − 1 in line (?) vanishes since Ee = 0. In the
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lines following this we again utilise the cyclic nature of summation over j to shift indices appropriately, and
the identity q2ici,j,k = q−2kci,j−1.k. Thus we conclude that ∆op(E)R = R∆(E). The calculation for the
generator F is similar so we will not include it. Invertibility of R follows from the result (1.31) in the main
report. We should also show that R satisfies the relations (id⊗∆)(R) = R13R12 and (∆⊗ id)(R) = R13R23,
however these calculations elude the author.

Now let us briefly discuss the representation theory of the quotient Ũq(sl2). Fortunately this is a simple

task. First we note that for any representation of Ũq(sl2) on V , ρ : Ũq(sl2)→ End(V ), we get a representation
of Uq(sl2) on V by precomposing with projection ρ◦π (composition of homomorphisms is a homomorphism).
Conversely for a representation of Uq(sl2) which acts trivially on the elements Ee, F e and Ke− 1, we have a

representation of the quotient Ũq(sl2) by the universal quotient property (1.10) (can be applied for just an
algebra homomorphism). Thus by studying the representation theory of Uq(sl2), we obtain the representation
theory for its quotient for free.

Consider the 2-dimensional representation of Uq(sl2) with basis {v−1, v1} and defining action

Kv±1 = q±1v±1, Ev−1 = v1, Ev1 = 0, Fv−1 = 0, Fv1 = v−1. (2.30)

Now suppose in our set up we had qe = 1 for e odd (only consider e > 1), then in particular the relations
Ke = id, Ee = 0 and F e = 0 all hold (in fact E2 and F 2 act as 0). Thus this representation factors to a
representation of the quotient. Then by the result (2.13) from the main report we can construct a solution
to the Yang-Baxter equation as R = (ρ⊗ ρ)(R). Let us calculate this as a matrix with respect to the tensor
basis elements {v−1 ⊗ v−1, v1 ⊗ v−1, v−1 ⊗ v1, v1 ⊗ v1}

Rv±1(⊗v±1) =
1

e

 e−1∑
i,j=0

q−2ijKi ⊗Kj(v±1 ⊗ v±1)


=

1

e

 e−1∑
i,j=0

q−2ij±j±i(v±1 ⊗ v±1)


=

1

e

 e−1∑
i,j=0

qi(−2j±1)±j(v±1 ⊗ v±1)


=

1

e

e−1∑
j=0

q±j
(1− q−e(2j∓1))

1− q−(2j∓1)
(v−1 ⊗ v−1)


= q(1±e)/2(v−1 ⊗ v−1) = q(1+e)/2(v−1 ⊗ v−1), (2.31)

Where we have used the fact that 1−q−e(2j+1)

1−q−(2j+1) is 0 unless (2j+ 1) is a multiple of e in which case it is e. Since

e was odd there is one occasion this occurs (namely j = (e± 1)/2). Using this same idea we calculate

R(v1 ⊗ v−1) =
1

e

 e−1∑
i,j=0

q−2ijKi ⊗Kj(v1 ⊗ v−1)


=

1

e

 e−1∑
i,j=0

q−2ij+i−j(v1 ⊗ v−1)


=

1

e

 e−1∑
i,j=0

qi(1−2j)−j(v1 ⊗ v−1)


=

1

e

e−1∑
j=0

q−j
1− qe(1−2j)

1− q(1−2j)
(v1 ⊗ v−1)


= q−(e+1)/2(v1 ⊗ v−1) = q(e−1)/2(v1 ⊗ v−1), (2.32)
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and

R(v−1 ⊗ v1) =
1

e

 e−1∑
i,j=0

q−2ijKi ⊗Kj(v−1 ⊗ v1) +

e−1∑
i,j=0

(q − q−1)q2(i−j)−2ijEKi ⊗ FKj(v−1 ⊗ v1)


=

1

e

 e−1∑
i,j=0

q−2ij−i+j(v−1 ⊗ v1) + (q − q−1)

e−1∑
i,j=0

qi−j−2ij(v1 ⊗ v−1)


=

1

e

 e−1∑
i,j=0

qi(−1−2j)+j(v−1 ⊗ v1) + (q − q−1)

e−1∑
i,j=0

qi(1−2j)−j(v1 ⊗ v−1)


=

1

e

e−1∑
j=0

qj
1− q−e(2j+1)

1− q−(2j+1)
(v−1 ⊗ v1) + (q − q−1)

e−1∑
j=0

q−j
1− qe(1−2j)

1− q(1−2j)
(v1 ⊗ v−1)


= q(e−1)/2(v−1 ⊗ v1) + q(e−1)/2(q − q−1)(v1 ⊗ v−1) (2.33)

Thus we have

R =


q(e+1)/2 0 0 0

0 q(e−1)/2 q(e−1)/2(q − q−1) 0
0 0 q(e−1)/2 0
0 0 0 q(e+1)/2

 = q(e−1)/2


q 0 0 0
0 1 (q − q−1) 0
0 0 1 0
0 0 0 q

 , (2.34)

which is easily verified as a solution of the Yang-Baxter equation.
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