Introduction to Quantum Groups - Calculation ASC Report - SCNC3101

Benjamin Morris - u6678371
March 18, 2021

1 Missing calculation from Appendix

Let us now show that \mathcal{R} given by

$$
\begin{equation*}
\mathcal{R}=\sum_{i, j, k=0}^{e-1} c_{i, j, k} E^{k} K^{i} \otimes F^{k} K^{j}, \quad c_{i, j, k}=\frac{1}{e} \frac{\left(q-q^{-1}\right)^{k}}{[k]_{q}!} q^{k(k-1) / 2+2 k(i-j)-2 i j} \tag{1.1}
\end{equation*}
$$

satisfies the relations $(\operatorname{id} \otimes \Delta)(\mathcal{R})=\mathcal{R}_{13} \mathcal{R}_{12}$. First let us note the following identities

$$
\begin{align*}
& {[n]_{q} }=\frac{q^{n}-q^{-n}}{q-q^{-1}}=q^{ \pm(1-n)}\left(\frac{q^{ \pm 2 n}-1}{q^{ \pm 2}-1}\right)=q^{ \pm(1-n)} \llbracket n \rrbracket_{q^{ \pm 2}} \tag{1.2}\\
& {[n]_{q}!}=[1]_{q}[2]_{q} \ldots[n]_{q}=q^{\mp\left(\sum_{k=1}^{n-1} k\right)} \llbracket n \rrbracket_{q^{ \pm 2}}!=q^{\mp k(k-1) / 2} \llbracket n \rrbracket_{q^{ \pm 2}}! \\
& c_{i, j, k} \llbracket k \\
& l \rrbracket_{q^{-2}}=c_{i, j, k} \frac{[k]_{q}!}{[] q_{q}![k-l]_{q}!} q^{-k(k-1) / 2} q^{l(l-1) / 2} q^{(k-l)((k-l)-1) / 2} \\
&=\frac{1}{e} \frac{\left(q-q^{-1}\right)^{k}}{[l] q_{q}![k-l]_{q}!} q^{2 k(i-j)-2 i j} q^{l(l-1) / 2} q^{(k-l)((k-l)-1) / 2} \\
&=e\left(\frac{1}{e} \frac{\left(q-q^{-1}\right)^{l}}{[l]_{q}!} q^{l(l-1) / 2+2 l(i-j)-2 i j}\right)\left(\frac{1}{e} \frac{\left(q-q^{-1}\right)^{k-l}}{[k-l]_{q}!} q^{(k-l)(k-l-1) / 2+2(k-l)(i-j)-2 i j}\right) q^{2 i j} \tag{1.3}\\
&=e c_{i, j, l} c_{i, j, k-l} q^{2 i j} \tag{1.4}\\
& c_{i, j, k}=c_{i+l, j, k} q^{-2 k l+2 l j} \quad c_{i, j, k}=c_{i, j+l, k} q^{2 l(k+i)}
\end{align*}
$$

Now we find,

$$
\begin{align*}
(\mathrm{id} \otimes \Delta)(\mathcal{R}) & =\sum_{i, j, k=0}^{e-1} c_{i, j, k} E^{k} K^{i} \otimes \Delta(F)^{k} \Delta(K)^{j} \\
& =\sum_{i, j, k=0}^{e-1} c_{i, j, k} E^{k} K^{i} \otimes\left(F \otimes 1+K^{-1} \otimes F\right)^{k}\left(K^{j} \otimes K^{j}\right) \\
& =\sum_{i, j, k=0}^{e-1} c_{i, j, k} E^{k} K^{i} \otimes\left(\sum_{l=0}^{k} \llbracket k \rrbracket_{q^{-2}} K^{-l} F^{k-l} K^{j} \otimes F^{l} K^{j}\right) \\
& =\sum_{i, j, k=0}^{e-1} c_{i, j, k} E^{k} K^{i} \otimes\left(\sum_{l=0}^{k} \llbracket k \rrbracket_{q^{-2}} q^{2 l(k-l)} F^{k-l} K^{j-l} \otimes F^{l} K^{j}\right) \\
& =e \sum_{i, j, k=0}^{e-1} \sum_{l=0}^{k} c_{i, j, l} c_{i, j, k-l} q^{2 i j+2 l(k-l)} E^{k} K^{i} \otimes F^{k-l} K^{j-l} \otimes F^{l} K^{j} \\
& =e \sum_{i, j, a, b=0}^{e-1} c_{i, j, b} c_{i, j, a} q^{2 i j+2 a b} E^{a+b} K^{i} \otimes F^{a} K^{j-b} \otimes F^{b} K^{j}, \tag{1.5}
\end{align*}
$$

where in line 3 we have used the q-binomial theorem to expand $(a+b)^{k}=\sum_{l=0}^{k} \llbracket \begin{aligned} & k \\ & l\end{aligned} \rrbracket_{q^{-2}} b^{l} a^{k-l}$ for

$$
\begin{equation*}
a=F \otimes 1, \quad b=K^{-1} \otimes F, \quad \text { and } \quad a b=q^{-2} b a \tag{1.6}
\end{equation*}
$$

In the second last line we expanded the term in brackets and used (1.3) and in the last line we wrote $k=a+b$ and let $a+b$ freely vary over $0,1, \ldots, e-1$ since the condition $a+b=k \leq e-1$ is enforced by the term E^{a+b} which is 0 whenever this is not the case. Now consider the left hand side of the desired equality. This can be manipulated as follows

$$
\begin{align*}
\mathcal{R}_{13} \mathcal{R}_{12} & =\sum_{\substack{i_{1}, j_{1}, k_{1}, i_{2}, j_{2}, k_{2}=0}}^{e-1} c_{i_{1}, j_{1}, k_{1}} c_{i_{2}, j_{2}, k_{2}}\left(E^{k_{1}} K^{i_{1}}\right)\left(E^{k_{2}} K^{i_{2}}\right) \otimes F^{k_{2}} K^{j_{2}} \otimes F^{k_{1}} K^{j_{1}} \\
& =\sum_{\substack{i_{1}, j_{1}, k_{1}, i_{2}, j_{2}, k_{2}=0}}^{e-1} c_{i_{1}, j_{1}, k_{1}} c_{i_{2}, j_{2}, k_{2}} q^{2 i_{1} k_{2}} E^{k_{1}+k_{2}} K^{i_{1}+i_{2}} \otimes F^{k_{2}} K^{j_{2}} \otimes F^{k_{1}} K^{j_{1}} \\
& =\sum_{\substack{i_{1}, j_{1}, k_{1}, i_{2}, j_{2}, k_{2}=0}}^{e-1}\left(c_{\left.i_{1}+i_{2}, j_{1}, k_{1} q^{-2 k_{1} i_{2}+2 i_{2} j_{1}}\right)\left(c_{i_{2}+i_{1}, j_{2}, k_{2}} q^{-2 k_{2} i_{1}+2 i_{1} j_{2}}\right) q^{2 i_{1} k_{2}} \times}\right. \\
& \times E^{k_{1}+k_{2}} K^{i_{1}+i_{2}} \otimes F^{k_{2}} K^{j_{2}} \otimes F^{k_{1}} K^{j_{1}} \tag{1.4}\\
& =\sum_{\substack{i_{1}, j_{1}, k_{1}, i_{2}, j_{2}, k_{2}=0}}^{e-1} c_{i, j_{1}, k_{1} c_{i, j_{2}, k_{2}} q^{2 i_{1} j_{2}+2 i_{2} j_{1}-2 k_{1} i_{2}} E^{k_{1}+k_{2}} K^{i} \otimes F^{k_{2}} K^{j_{2}} \otimes F^{k_{1}} K^{j_{1}}}^{\sum_{\substack{i_{1}, j_{1}, i_{2} \\
j_{2}, k_{2}=0}}^{e-1} c_{i, j_{1}, k_{1}} c_{i, j_{1}, k_{2}} q^{2 i_{1} j_{2}+2 i_{2} j_{1}-2 k_{1} i_{2}+2\left(j_{1}-j_{2}\right)\left(i+k_{2}\right)} E^{k_{1}+k_{2}} K^{i} \otimes F^{k_{2}} K^{j_{2}} \otimes F^{k_{1}} K^{j_{1}}} \\
& =\sum_{\substack{i_{1}, j_{1}, k_{1}, i_{2}, j_{2}, k_{2}=0}}^{e-1} c_{i, j_{1}, k_{1}} c_{i, j_{1}, k_{2}} q^{2 k_{2}\left(j_{1}-j_{2}\right)+i\left(3 j_{1}-j_{2}-k_{1}\right)+\iota\left(j_{2}-\left(j_{1}-k_{1}\right)\right)} E^{k_{1}+k_{2}} K^{i} \otimes F^{k_{2}} K^{j_{2}} \otimes F^{k_{1}} K^{j_{1}} \tag{1.4}
\end{align*}
$$

where we have noted that summing over i_{1}, i_{2} is the same as summing over i and ι (modulo e) as these uniquely determine i_{1}, i_{2} modulo e, and powers of q and K are invariant modulo e and hence the coefficients $c_{i, j, k}$ are invariant for i modulo e. Now observe that

$$
\begin{equation*}
x=\sum_{i=0}^{e-1} q^{i p} \Rightarrow q^{p} x=\sum_{i=0}^{e-1} q^{(i+1) p}=\sum_{i=1}^{e-1} q^{i p}+q^{e p}=1+\sum_{i=0}^{e-1} q^{(i+1) p}=x . \tag{1.8}
\end{equation*}
$$

This implies that $x=0$ unless $q^{p}=1$ that is $p=0 \bmod e$. If $q^{p}=1$ then it is clear that $x=e$. Hence we may write $x=e \delta_{0, p} \bmod e$. In other words x multiplies by e and enforces the equality $p=0$ to hold modulo
p when summed over. Thus (1.7) becomes

$$
\begin{align*}
\mathcal{R}_{13} \mathcal{R}_{12} & =\sum_{\substack{i, j_{1}, k_{1}, j_{2}, k_{2}=0}}^{e-1} \delta_{0, j_{2}-\left(j_{1}-k_{1}\right)} c_{i, j_{1}, k_{1}} c_{i, j_{1}, k_{2}} q^{2 k_{2}\left(j_{1}-j_{2}\right)+i\left(3 j_{1}-j_{2}-k_{1}\right)} E^{k_{1}+k_{2}} K^{i} \otimes F^{k_{2}} K^{j_{2}} \otimes F^{k_{1}} K^{j_{1}} \\
& =e \sum_{i, j_{1}, k_{1}, k_{2}=0}^{e-1} c_{i, j_{1}, k_{1}} c_{i, j_{1}, k_{2}} q^{2 k_{2}\left(j_{1}-\left(j_{1}-k_{1}\right)\right)+i\left(3 j_{1}-\left(j_{1}-k_{1}\right)-k_{1}\right)} E^{k_{1}+k_{2}} K^{i} \otimes F^{k_{2}} K^{j_{1}-k_{1}} \otimes F^{k_{1}} K^{j_{1}} \\
& =e \sum_{i, j_{1}, k_{1}, k_{2}=0}^{e-1} c_{i, j_{1}, k_{1}} c_{i, j_{1}, k_{2}} q^{2 k_{2} k_{1}+2 i j_{1}} E^{k_{1}+k_{2}} K^{i} \otimes F^{k_{2}} K^{j_{1}-k_{1}} \otimes F^{k_{1}} K^{j_{1}}, \tag{1.9}
\end{align*}
$$

where in the second line we have enforced the equality $j_{2}=j_{1}-k_{1} \bmod e$ using the delta function. Clearly this is the same as (1.5) up to a change of label $k_{2} \leftrightarrow a, k_{1} \leftrightarrow b, j_{1} \leftrightarrow j$.

