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The (parameter dependent) YBE on End(V; ® V> ® V3) is
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Yang-Baxter Equation
The (parameter dependent) YBE on End(V; ® V> ® V3) is

Ry, v.(u1, u2) Ry, vy (ur, u3)Ry, vy (U2, u3)
= Rv, vy (2, u3) Ry, vy (1, u) Ry, v, (U1, to),
(Rv;,v;(ui, uj) invertible).
Additive dependence = Ry, v, (uj, u;) = Ry, v;(u;i — uj)
Rv, v (u=v)Rv, vs(1)Rv, v (v) = Ry, vy (V)R vs (W) Ry, v, (1= V).
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Our Goal: construct an R-matrix R(u) € End(V ® V),

ng(u) =1
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RLL-Method
Our Goal: construct an R-matrix R(u) € End(V ® V),

Riz(u) =1 1. We will follow the “RLL-scheme”:

2
1 1
/ /
1 v u 1 v u
u—v = u—v — u-—-v = u—v
2 2
u\ v ”\ v
3 2 3 2
4
1 1
™ >
= u—v — = u—v
A A
3 2 3 2
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This requires two matrices:

> Riz(u) = % € End(C" ® C") (an n? x n? matrix).
2

> L(u) = <u|> € End(C") ® A, where A C End(V). An nx n

matrix with values in A.



Towards a factorised R-matrix with Ug(sl,) Symmetry -
LStep 1: Symmetry Algebras and Representations
UNIVERSITY OF LEEDS

Defining R-Matrix and Universal L-operators

RLL relation in End (C" ® C" @ V):

Riz(u — v)Li(u)La(v) = La(v)Li(u)Ria(u — v).

Li(v) = L(uv) ®idy, La(v) =id, ® L(v).



Towards a factorised R-matrix with Ug(sl,) Symmetry -
LStep 1: Symmetry Algebras and Representations
UNIVERSITY OF LEEDS

Defining R-Matrix and Universal L-operators

RLL relation in End (C" ® C" @ V):

Riz(u — v)Li(u)La(v) = La(v)Li(u)Ria(u — v).
Li(v) = L(uv) ®idy, La(v) =id, ® L(v).

(La(u)La(v))ik = Lip(u)Lji(v).



Towards a factorised R-matrix with Ug(sl,) Symmetry -
LStep 1: Symmetry Algebras and Representations
UNIVERSITY OF LEEDS

Defining R-Matrix and Universal L-operators

RLL relation in End (C" ® C" @ V):

Riz(u — v)Li(u)La(v) = La(v)Li(u)Ria(u — v).
Li(v) = L(uv) ®idy, La(v) =id, ® L(v).
(Lo(u)La(v))ijm = Lis(u)Ljk(v).

= RLL relation reduces to quadratic algebra relations. Can think
of it as expressing the defining algebra relations for A.



Towards a factorised R-matrix with Ug(sl,) Symmetry "
LStep 1: Symmetry Algebras and Representations
UNIVERSITY OF LEEDS

Defining R-Matrix and Universal L-operators

RLL relation in End (C" ® C" @ V):

Ri2(u — v)Li(u)La(v) = La(v)Li(v)Ria(u — v).
Li(u) = L(u) ®idp, Lo(v) =idp @ L(v).
(Lo(u)La(v))ijm = Lis(u)Ljk(v).

= RLL relation reduces to quadratic algebra relations. Can think
of it as expressing the defining algebra relations for A.

Why YBE for R? This is a consistency condition for associativity
of A.
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The universal enveloping algebra (UEA) A = U(sl,,) has a defining
R-matrix

ng(u) =u-id,2 + P12 : C'"eC'"—-C"'wC",

where, P12 is the flip Pia(x1 ® x2) = x2 ® x1, and a universal
L-operator

Lu)=u-id, @1a+ Y e @ Ej,
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where ¢j; is the matrix unit.
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Undeformed Case: sl,

The universal enveloping algebra (UEA) A = U(sl,,) has a defining
R-matrix

R12(U) =u-id,2 + P12 : C'"eC'"—-C"'wC",

where, P12 is the flip Pia(x1 ® x2) = x2 ® x1, and a universal
L-operator

n
Lu)=u-id, @1a+ Y e @ Ej,
ij=1
where e is the matrix unit. Here {Ej;} is the Cartan-Weyl basis
for sl

hi = Eii — Eix1,i+1, > ;Ei=0, Eiit1=-¢e, Eit1i="1,
[Eij, Ex] = djx Eir — 0i Ejj.-
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Differential Representation of sl,
For n-parameters p € C" with )", p; = n(n—1)/2, we can define a
representation on C[x; | 1 < j < i < n] by

Ej = (ZD(-p)Z7Y);,

where
1 —pn P P31 ... Ppm
xo1 1 ) —pn—1 P32 ...  Pp
X31 X32

z= |t . D(-p) = ]
. . . . —pP2 Pn,nfl
Xnl Xp2 ... Xnn—1 1 —p1

where the Pj; are first order linear differential operators:

n
P,'J' = —8,-J- - Z Xki - akj'
k=i+1

[Derkachov and Manashov, 2006]
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> 1 is a lowest weight vector with h;-eigenvalues
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Differential Representation of sl,
E.g. n= 2 case: Taking Ny = x0x and m = py — p1 + 1,

f=—-0y, e=x-(Ng+m), h=2N,+ m.

General case:
> 1 is a lowest weight vector with h;-eigenvalues
mj = ppi1—j — Pn—i + 1.
» For “generic’ m;, V, is irreducible.
» It is reducible if some m; € Z<q. It contains a finite
dimensional irreducible subrep iff true for all m;.
» It has a factorised L-operator!

L(u) = ZD(u)Z7! = ,

u = (uj), where u; = u — pj.
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g-Deformed Case: U,(sl,)

The g-deformed UEA Uy (sl,): For some q = el € C\ {0, +1}

» Generators: e;, f;, and invertible k; = g/ for i = 1,2

,n—1
» Relations:

[k,', kj] = 0, k,-ejki_l = qa"f'e-

ki — k!
[elaf_-[] _5uﬁ _5U[h]q’

kifiki * = qf;

lei, &] = [fi, fi] =0, for [i—j|>1,
g’gie1 — (9 + g Heigirig + gie187 =0,

gi = e, f.
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The g-deformed UEA Uy (sl,): For some q = el € C\ {0, +1}
» Generators: e;, f;, and invertible k; = ¢ for i =1,2,...,n—1

» Relations:
[k,‘, kj] = 0, k,-ejki_l = qa"f'ej,

ki — kit
e, fi] = 5ijm = dji[hilq,

kifiki = q™f,
[e,-, ej] = [ﬁ, 6] = 0, for |i —j‘> ].,
g’gie1 — (9 + g Heigirig + gie187 =0,

gi = e, fi. The a;; are components of the A, Cartan matrix.
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g-Deformed Case: U,(sl,)

The g-deformed UEA Uy (sl,): For some q = el € C\ {0, +1}

» Generators: e;, f;, and invertible k; = g/ for i = 1,2

,n—1
» Relations:

[k,‘, kj] = 0, k,-ejki_l = qa"f'e-

ki — k!
[ei ] _5uﬁ = djihilq,

kifiki * = qf;

lei, &] = [fi, fi] =0, for [i—j|>1,

g’gie1 — (9 + g Heigirig + gie187 =0,

gi = e, fi. The a;; are components of the A, Cartan matrix
> Notation: [x]g = (¢* —¢7)/(q—q7")
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g-Deformed Case: U,(sl,)

The g-deformed UEA Uy(sl,) has a defining R-matrix
R(u) = ¢"R+q “R™! € End(C" ® C"),
and a universal L-operator [Jimbo, 1986]
L(u) = q"LT + q7“L™ € End(C") ® Uqy(sl,),
(LT)j o Ejj for j > i.
Now specialise:

Is there an analogous class of representations for Ug(sl,)? How
about a factorised L-operator?
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g-Difference Representation of Ug(sl,)
sl,: differential representation <+ Ugq(sl,): "g-difference”
representation: Want a representation on Cx;; | 1 <j < i < n]
» Multiplication operator x;;, number operator Nj; = x;;0j;.
> g-shift operator g“Ni: q®Nif(x;) = f(q%x;). In general
q* = Nif (o1, . Xpno1) = G2 F(° 01, -+, G X 1)

» g-difference operator: Dj; = %[N,-j]q with the action
ij

Dyf(x) = L@ =1a i)

xij(g—q~1)
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representation: Want a representation on Cx;; | 1 <j < i < n]
» Multiplication operator x;;, number operator Nj; = x;;0j;.
> g-shift operator g“Ni: q®Nif(x;) = f(q%x;). In general
qa—l—z aijlNj f(X217 cee ,Xn,n—l) = qaf(qaﬂXZla ceey qa"’n_lxn,n—l)
» g-difference operator: Dj; = %[N,-j]q with the action
ij
_ flaxg)—f(a " x;)
D,jf(X,j) = X,-j'(qfq—l) ij
n = 2 case: Just one variable xp; = x

f=-D., e=x[m+ Nq, h=2N,+m,

xm x(m+2) x(m+4) x(m+2n)

x0 Q x—1 QX_[Q]q Q x—[3]q x—[n]q QX—[”""l]q
Og—\lmxw_\xzf\ K\anf\

X[mlg  x[m+1lg  x[m+2]q x[m+n—1]q x[m+n]q
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» For p € C", there is an analogous representation V), of
Uq(slp) [Dobrev, Truini, and Biedenharn, 1994].
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» For p € C", there is an analogous representation V), of
Uq(slp) [Dobrev, Truini, and Biedenharn, 1994].

» Explicit formula? obtained inductively 4+ not unique!



Towards a factorised R-matrix with Ug(sl,) Symmetry

LStep 1: Symmetry Algebras and Representations
[

g-Difference Representation UNIVERSITY OF LEEDS

g-Difference Representation of Ug(sl,)

» For p € C", there is an analogous representation V), of
Uq(slp) [Dobrev, Truini, and Biedenharn, 1994].

» Explicit formula? obtained inductively 4+ not unique!

> An Explicit formula: m; = pp—j — ppr1-i +1

n i—1
E) = =T N S (N D)
n i=Lne N . J=L N N
fi( ) — 7D,-+1,,-qEJ:1(NU N:+1,1),EJ(;11 X;jD;+1’jqzk:1(N’k Niv1,6)

R0

n
n . S0 (N i1~ Nii)
Xf+1,f[mf+Ni+1,i+Zj:;+z(er‘*Nj,fﬂ)]q-l—q i3 XDy g1 gk LT kG

_ql

i1
mi+2N; 41 j §~i—1 S ki o N =Ny i)+ (Nige1 =N k)
LIS X, Dyg k2 TR k=j+17 i

il
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Towards a factorised R-matrix with Ug(sl,) Symmetry "
[

g-Difference Representation UNIVERSITY OF LEEDS

g-Difference Representation of Ug(sl,)

» For p € C", there is an analogous representation V,, of
Uq(slp) [Dobrev, Truini, and Biedenharn, 1994].

» Explicit formula? obtained inductively 4+ not unique!

> An Explicit formula: m; = pp—j — ppr1-i +1

n i—1
E,'(' ) — *Pn+17i72}:1 NU+ZJ"1:,'+1(Nji+1),
(n) LN N ; J=L N N
£ = Dy gt M N’“”)*E};lXijDi+1,jqz":1(N”‘ Niv14)

R0

AN n N —m; Shei(Nijiv1 =N i)
Xf+1,f[mr+N:+1,:+Zj:i+2(Nﬂ*NJMH)]q+q i3 XDy g1 gk LT kG

il

. n L X i—1 i .
7qm,'+2N,-+1’i 217; Xi+1jDiquk:i+2(Nkl Nk,:+1)+zk:j+1(Nl+l,k Nl,k)

[Awata, Noumi, and Odake, 1994]
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Towards a factorised R-matrix with Ug(sl,) Symmetry -
LStep 1: Symmetry Algebras and Representations
Lq-DifFerence Representation UNIVERSITY OF LEEDS

Factorised L-operator?
sly: L(u) = ZD(u)Z}

1 un P P31o... Ppm
x1 1 1 Up—1 P3o ... P
X31 X32

uz Pn,nfl

Xpl Xp2 --. Xp,n—1 1 u



Towards a factorised R-matrix with Ug(sl,) Symmetry "
LStep 1: Symmetry Algebras and Representations

Lq-DifFerence Representation UNIVERSITY OF LEEDS
: :
Factorised L-operator?
sl,: L(u) = ZD(u)Z 7!
1 un Pa1 P31 Ppm
x1 1 ) up—1 P32 ...  Pp
7 — X31 X32 ’ D(U) — ’
. y . - uz Pn,nfl
Xnl Xp2 .-+ Xn,n—1 1 u

Uy(sl,): Postulate L(u) = Z1(u)D(u)Zy(u)™?

[Un]qu:l Py Pn1
D(U) = ’ L . )
[UZ]qu"_l Pn,n—l
[u1]qg®™
1
L0
x1q21 1
Pij = —Dyq"i =571 xuDyga"* ,  Zi(u) =

O 0

a _
Xp1q°nl ... Xpnp—19 ™" 11
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LStep 1: Symmetry Algebras and Representations

Towards a factorised R-matrix with Ug(sl,) Symmetry -
[

g-Difference Representation UNIVERSITY OF LEEDS

Factorised L-operator?

n=2: Yes [Derkachov, Karakhanyan, and Kirschner, 2007]

_ 10 (lwlgg ™1 —Dxg™ 1 0
L(Ul, U2) - (qU]_—NxX 1) ( 0 [ul]quX _qu2—NxX 1]/



Towards a factorised R-matrix with Ug(sl,) Symmetry -
LStep 1: Symmetry Algebras and Representations
Lq-DifFerence Representation UNIVERSITY OF LEEDS

Factorised L-operator?

n=2: Yes [Derkachov, Karakhanyan, and Kirschner, 2007]

_ 10 (lwlgg ™1 —Dxg™ 1 0
L(U17 U2) - (qul—NxX ]_> ( 0 [ul]quX _qu2—NxX 1]/

n=3: Yes [Valinevich et al., 2008], L(u1, o, u3) = Z;DZy* with

[Ll3]qq_N21+N31 (D21+X32D31qN31_N32_1)qN21+N31 D31qN31
D= 0 [u2]qqN21—N32 Dspqt2—Na1+Ns2
0 0 [u1]qqMN32t a1

1 0 0 1 0 0
Z1 = | g2 MMMy, 1 0), Z=|(92xa 1 0],

g U1 N1t Ng s, qui 2= N3y, q3lx3; q92x3p 1

1 = uz3—Noy, c31 = —uz3 — N3g — Npy — 1, c30 = Nog + Nzg — Nao.
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Factorised L-operator?

n=4:




Towards a factorised R-matrix with Ug(sl,) Symmetry -
|—Step 1: Symmetry Algebras and Representations
|—q-DifFerence Representation UNIVERSITY OF LEEDS

Factorised L-operator?

n=4: No...
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Factorised L-operator?

n=4: No... Our ansatz reduces to a large system of linear
equations for the g-shift coefficients (182) which can be shown to
be inconsistent.
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Factorised L-operator?

n=4: No... Our ansatz reduces to a large system of linear
equations for the g-shift coefficients (182) which can be shown to
be inconsistent.

“Controlled deformation” breaks - We have “pure quantum
phenomena” in the Cartan-Weyl elements:

Epp = [f3, flqg = — DapqMa—Nez=Nu—1 _ x1Dgp g~ (1HNs1)

+(q — g ")x31 D41 D3p g™ M1



Towards a factorised R-matrix with Ug(sl,) Symmetry "
LStep 1: Symmetry Algebras and Representations
Lq-DifFerence Representation UNIVERSITY OF LEEDS

Factorised L-operator?

n=4: No... Our ansatz reduces to a large system of linear
equations for the g-shift coefficients (182) which can be shown to
be inconsistent.

“Controlled deformation” breaks - We have “pure quantum
phenomena” in the Cartan-Weyl elements:

Epp = [f3, flqg = — DapqMa—Nez=Nu—1 _ x1Dgp g~ (1HNs1)

+(q — g ")x31 D41 D3p g™ M1

A similar term appears in the Ey4 Cartan-Weyl element.



Towards a factorised R-matrix with Ug(sl,) Symmetry "
LStep 1: Symmetry Algebras and Representations
Lq-DifFelrence Representation UNIVERSITY OF LEEDS

Factorised L-operator?

n=4: No... Our ansatz reduces to a large system of linear
equations for the g-shift coefficients (182) which can be shown to
be inconsistent.

“Controlled deformation” breaks - We have “pure quantum
phenomena” in the Cartan-Weyl elements:

Eir = [f3, blqg = — DapqMaNez=Nn=1 s Dyy g~ N1)
+(q — g ")x31 D41 D3p g™ M1

A similar term appears in the Ey4 Cartan-Weyl element.

Such terms cannot arise from our ansatz.



Towards a factorised R-matrix with Ug(sl,) Symmetry -
LStep 1: Symmetry Algebras and Representations
Lq-DifFerence Representation UNIVERSITY OF LEEDS

Factorised L-operator?

n=4: A modified factorisation L(u) = Z;(u)D(u)Z»(u)™?



Towards a factorised R-matrix with Ug(sl,) Symmetry "
LStep 1: Symmetry Algebras and Representations
Lq-DifFerence Representation UNIVERSITY OF LEEDS

Factorised L-operator?

n=4: A modified factorisation L(u) = Z;(u)D(u)Z»(u)™?

1
1 x01q21
x1q721 1 9 1
Zy = x31G9731 x32q732 1 — | —(g—q ')xs1D32q%321 ,
Xx41G741 xa2q742 x43q%43 1 x31g331 x32q?32 1
X41G41 X42G°42 x43q743 1
1
X21q°1 1
_ | xag21 1 X232
Zp = x31431 x32q32 1 = Xx31931L qu c
g < < —(g—q~")x21D319%321
X41G4L Xx42q“42 xa3q“43 1

X41q“41 X42q42 X43G“43 1



Towards a factorised R-matrix with Ug(sl,) Symmetry -
LStep 1: Symmetry Algebras and Representations
Lq-DifFerence Representation UNIVERSITY OF LEEDS

Factorised L-operator?

General n: Order of highest term in (g — g™ 1)
000O0OOTO 0O
0011111
001222
00123

+ ~Y

O(L™ (u)) 00 1 2
0 01
00
0

= factorisation involves higher terms in (g — g™ 1).



Towards a factorised R-matrix with Ug(sl,) Symmetry -
LStep 1: Symmetry Algebras and Representations
Lq-DifFerence Representation UNIVERSITY OF LEEDS

Factorised L-operator?

General n: Order of highest term in (g — g™ 1)
000O0OOTO 0O
0011111
0 01 2 2 2
00123

+ ~Y

O(L™ (u)) 00 1 2
0 01
00
0

= factorisation involves higher terms in (g — g™ 1).

Q: Factor L-operator with near diagonal matrices which are only
first order in (q — g™ 1).



Towards a factorised R-matrix with Ug(sl,) Symmetry -
I—Step 2: Parameter Permutations and YBE
UNIVERSITY OF LEEDS

Parameter Permutations and YBE
For R(u) := PoR(u) € End(V, @ Vy)
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Parameter Permutations and YBE
For R(u) := P oR(u) € End(V, ® V) the defining RLL-relation is

R(u = v)Li(u)Lo(v)
= L1(v)Lo(u)R(u — v)’
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LStep 2: Parameter Permutations and YBE
UNIVERSITY OF LEEDS

Parameter Permutations and YBE
For R(u) := P oR(u) € End(V, ® V) the defining RLL-relation is

R(u— V)Ll(l\l/)Lg(V)
= Li(v)La(u)R(u — v)

~

R realises the permutation (u,v) — (v, u) € Perm(u,v) ~ Sy,.



Towards a factorised R-matrix with Ug(sl,) Symmetry "
LStep 2: Parameter Permutations and YBE

UNIVERSITY OF LEEDS

Parameter Permutations and YBE
For R(u) := P oR(u) € End(V, ® V) the defining RLL-relation is

R(u— v)L1(u)L2(v)
= Li(v)L2(u)R(u—v)

~

R realises the permutation (u,v) — (v, u) € Perm(u,v) ~ Sy,.

IDEA: Factorise R(u — v) in terms of elementary transposition
operators S; € End(V, ® Vs )

S,-L12(u, V) = L12(s,-(u, V))S,’, (L12(u, V) = Ll(u)Lg(v))

(S,-(ozl,...ozzn) = (al,...,a;+1,a;,...a2n)) for i = 1,.. .,2n— 1.
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Parameter Permutations and YBE

IDEA: Factorise R(u — v) in terms of elementary transposition
operators S; € End(V, ® V)

S,-ng(u, V) = L12(S,'(U, V))S,‘, (L12(u, V) = Ll(U)LQ(V))

(si(aa,...00n) = (Q1,...,qjr1,Q),...app)) for i =1,...,2n— 1.
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IDEA: Factorise R(u — v) in terms of elementary transposition
operators S; € End(V, ® V)

S,-ng(u, V) = L12(S,'(U, V))S,‘, (L12(U, V) = Ll(U)LQ(V))

(si(aa,...00n) = (Q1,...,qjr1,Q),...app)) for i =1,...,2n— 1.
Simplification: Can just find n — 1-“intertwining” operators
Ti € End(V,):

Ti(u)L1(u) = Li(siu)Ti(u),



Towards a factorised R-matrix with Ug(sl,) Symmetry -
LStep 2: Parameter Permutations and YBE
UNIVERSITY OF LEEDS

Parameter Permutations and YBE

IDEA: Factorise R(u — v) in terms of elementary transposition
operators S; € End(V, ® V)

S,-ng(u, V) = L12(s,-(u, V))S,', (L12(u, V) = Ll(U)LQ(V))

(si(aa,...00n) = (Q1,...,qjr1,Q),...app)) for i =1,...,2n— 1.

Simplification: Can just find n — 1-“intertwining” operators
Ti € End(V,):
Ti(u)L1(u) = Li(siu)Ti(u),

and a single “exchange” operator:

S,,(u, V)L12(U, V) = S,,(u, v)L12(u1, oo, Up_1, 1, Up, VO, Vn).
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Parameter Permutations and YBE

1. Two different decompositions of (u, v) — (v, u) into
elementary transpositions gives two candidates for R.
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LStep 2: Parameter Permutations and YBE
UNIVERSITY OF LEEDS

Parameter Permutations and YBE
1. Two different decompositions of (u, v) — (v, u) into
elementary transpositions gives two candidates for R.
2. YBE for R:
7?12(V—W)7é23(u—w)7\é12(u—v) = 7?23(U—V)7\é,12(u—W)'fézg(v—w).



Towards a factorised R-matrix with Ug(sl,) Symmetry -
LStep 2: Parameter Permutations and YBE
UNIVERSITY OF LEEDS

Parameter Permutations and YBE

1. Two different decompositions of (u, v) — (v, u) into
elementary transpositions gives two candidates for K.

2. YBE for R:
7?12(V—W)7é23(u—w)7\é12(u—v) = 7?23(U—V)7\é,12(u—W)'fézg(v—w).
These operators should define an action of Sy, i.e.,

Sip -+ SipSiy > Sip(Sii_y Sy (U, v)) Lo Siy(siy (u, v)) Sy (u, v),

respects the group relations.



Towards a factorised R-matrix with Ug(sl,) Symmetry
LStep 2: Parameter Permutations and YBE ﬁ

UNIVERSITY OF LEEDS

Parameter Permutations and YBE

1. Two different decompositions of (u, v) — (v, u) into
elementary transpositions gives two candidates for K.
2. YBE for R:

7%12(V—W)7é23(u—w)7\é12(u—v) = 7?23(U—V)7\é12(u—W)7\é23(V—W).

These operators should define an action of Sy, i.e.,
Si; + + - SiySiy + Sip(Si_y -+ sy (U, v)) .o Sip(sy (u, v)) Sy (u, v),

respects the group relations.
YBE then follows from equivalence of the decompositions in
Perm(u, v, w)

R R R
(u, v, w) =5 (v, u, w) =2 (v, w, u) =5 (w, v, u),

(u,v, w)lh(u, w, v)lﬁ(w, u, v)lﬁ(w, v, u).
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Literature

Undeformed Case: Treated in [Derkachov and Manashov, 2006].
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LStep 2: Parameter Permutations and YBE
LUndeformed Permutation Operators UNIVERSITY OF LEEDS

Literature

Undeformed Case: Treated in [Derkachov and Manashov, 2006].

» Intertwining Operators: up to a change of variables

77(Ui - U,'+1) = (—85)(”i_ui+1)‘
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Literature

Undeformed Case: Treated in [Derkachov and Manashov, 2006].

» Intertwining Operators: up to a change of variables

Ti(uj — ujy1) = (—0g) 4.
» Exchange Operator: A multiplication operator
Snlun —v1) = (F(x,y))( ),

where F(x,y) is a polynomial in y; and (xj1 — yj1).
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LUndeformed Permutation Operators UNIVERSITY OF LEEDS

Literature

Undeformed Case: Treated in [Derkachov and Manashov, 2006].

» Intertwining Operators: up to a change of variables

Tiuj — i) = (=) ).
» Exchange Operator: A multiplication operator
Snlun —v1) = (F(x,y))( ),

where F(x,y) is a polynomial in y; and (xj1 — yj1).
» Symmetric Group Relations: Star-Triangle integral identities.
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LStep 2: Parameter Permutations and YBE
LUndeformed Permutation Operators UNIVERSITY OF LEEDS

Literature

Undeformed Case: Treated in [Derkachov and Manashov, 2006].

» Intertwining Operators: up to a change of variables

Tiuj — i) = (=) ).
» Exchange Operator: A multiplication operator
Snlun —v1) = (F(x,y))( ),

where F(x,y) is a polynomial in y; and (xj1 — yj1).
» Symmetric Group Relations: Star-Triangle integral identities.
Uq(sl2) Case: [Derkachov, Karakhanyan, and Kirschner, 2007]
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Towards a factorised R-matrix with Ug(sl,) Symmetry -
LUndeformed Permutation Operators UNIVERSITY OF LEEDS

Literature

Undeformed Case: Treated in [Derkachov and Manashov, 2006].

» Intertwining Operators: up to a change of variables

Tiuj — i) = (=) ).
» Exchange Operator: A multiplication operator
Snlun —v1) = (F(x,y))( ),

where F(x,y) is a polynomial in y; and (xj1 — yj1).
» Symmetric Group Relations: Star-Triangle integral identities.
Uq(sl2) Case: [Derkachov, Karakhanyan, and Kirschner, 2007]

Uqg(sl3) Case: [Valinevich et al., 2008]



Towards a factorised R-matrix with Ug(sl,) Symmetry
[

LStep 2: Parameter Permutations and YBE

Lq-deformed Permutation Operators UNIVERSITY OF LEEDS

g-Deformed Case

Proposition
The intertwiners for the Uq(sl,) (|q|< 1) L-operator are given by
7@ = (A7) G )

eq2(q2(N,-+1,,-+lfo¢)X'5n) )’

—i

e(2) = (Z: )" = [0 - 2)1 - P2)1 - 22)...] ",

(Z) . —:q)i o _ )
% =2~ (q(q:q)cj-)J z, A£1,7—)i = (xi+1,1)"'q”

where o = up_j — Upy1—j, and

X\ = 1 X1 Y0 22 (M — g7 M)g.
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LStep 2: Parameter Permutations and YBE
Lq-deformed Permutation Operators UNIVERSITY OF LEEDS

g-Deformed Case

Proposition
The intertwiners for the Uq(sl,) (|q|< 1) L-operator are given by

) a e (q2(Ni+1,i+1)x'5’l)i)
n—i

eq2(q2(N,-+1,,-+17a)X'5n) )’

—i

T\ @) = (A
e2(2) = (Z: D)) = [(1 - 2)(1 - P2Z)(1 - ¢*22)...] ",

(Z) . —:q)i o _ )
% =2~ (q(q:q)cj')J z, /\gn—)i = (xi+1,1)"'q”

where o = up_j — Upy1—j, and
(n) _ n Xj,i+1 ( N =N i
X, i =1+ X120 En (i — q=MNi)gi.

Obtained using an approach from [Valinevich et al., 2008].



Towards a factorised R-matrix with Ug(sl,) Symmetry

|—Step 2: Parameter Permutations and YBE

|—q-deformed Permutation Operators UNIVERSITY OF LEEDS

g-Deformed Case



Towards a factorised R-matrix with Ug(sl,) Symmetry -
LStep 2: Parameter Permutations and YBE
Lq-deformed Permutation Operators UNIVERSITY OF LEEDS

g-Deformed Case

Proposition
The intertwiners for the Uq(sl,) L-operator, Ti(c), define an
action of the symmetric group Perm(u) ~ S,,.
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LStep 2: Parameter Permutations and YBE
Lq-deformed Permutation Operators UNIVERSITY OF LEEDS

g-Deformed Case

Proposition
The intertwiners for the Uq(sl,) L-operator, Ti(c), define an
action of the symmetric group Perm(u) ~ S,,.

Proof.

The only non-trivial relation is the braid relation

Ti(a)Tiva(a+ B)Ti(8) = Tixa(B)Ti(a + B)Tiva(a).



Towards a factorised R-matrix with Ug(sl,) Symmetry "
LStep 2: Parameter Permutations and YBE
Lq-deformed Permutation Operators UNIVERSITY OF LEEDS

g-Deformed Case

Proposition
The intertwiners for the Uq(sl,) L-operator, Ti(c), define an
action of the symmetric group Perm(u) ~ S,,.

Proof.

The only non-trivial relation is the braid relation
Ti(e)Tiva(a + B)Ti(B) = Tiza(B)Tila + B)Tita(e).

After a series expansion it is reduced to a family of (terminating)
g-series identity relating rank / + 1 and rank 2/ — 1 g-Lauricella
series. O
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g-Series ldentity

(Type D) g-Lauricella Function: g-Lauricella functions are a family
of multivariable hypergeometric series:
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g-Series ldentity

(Type D) g-Lauricella Function: g-Lauricella functions are a family
of multivariable hypergeometric series:

¢(")[b'al,.. s Ani € Qi X1, « -+, Xn)

—Z Z qu(alq) ---(an:q)mnxlmlmxg,n’ )

(cia)m(a: @)m, - -- (G @)m,

m10

where M =" | m; and

(:@)m=(1=x)(1—gx)...(1—qg" *x).
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g-Series ldentity

(Type D) g-Lauricella Function: g-Lauricella functions are a family
of multivariable hypergeometric series:

CDg’)[b; al, .., an C g X1y -+ Xn)
=y Ly i@ (@i Do

(c; m(a: Qmy - - - (45 @), "

where M =37, m; and
(x:@)m = (1 —x)(1 —gx)...(1 — g™ 1x).

[Andrews, 1972] gives a general transformation formula allowing us
to rewrite (%) in terms of a p11¢, hypergeometric series.
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with K =37 o kj and L, M.
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g-Series ldentity

For n > 1 and non-negative integer tuples
k= (ko,. .. ko) = (ko k), 1= (h,...,ln), m=(mi,...,mp_1),

with K'=>"7 ; kj and L, M. Define n-tuples r = (r;) and p = (p;)

H=1+4Y0 (k= (b+m)), pi=1=30_ (k= (l+ma)).
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g-Series ldentity

For n > 1 and non-negative integer tuples

k= (ko kn) = (ko, k), 1= (h,..., 1), m=(my,....,my_1),
with K'=>"7 ; kj and L, M. Define n-tuples r = (r;) and p = (p;)
=14 (ke = (lh+ma)), pi=1-35 (k—(lr+ma)).

The identity we need is the equality Ok | m = Qg 1.m

@k,l,m = (égé_qs)Lz—Aj\,/l (D(L?nil) [ Gqlgm ;qlfoM/g; qr+l+(m,0)7q(r,-,fn)+m ]’
, +
Qppm = ¢ ((;C, 'qc;;(K O D¢ g gt K e gt K /(e 0). 0t ],

for arbitrary complex parameters &, (.
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Exchange Operator

The defining relation for the exchange operator S, is

SnLl(Un)LQ(Vl) = L1(v1)L2(u,,)S,,.
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Recall the (postulated) factorisation for L(u). This can be put into
the form:
Li(u) = Zy(11)DZs(u,) 7t
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Exchange Operator

The defining relation for the exchange operator S, is
SnLl(un)Lg(vl) = L1(V1)L2(Un)8n.

Recall the (postulated) factorisation for L(u). This can be put into
the form:
Li(u) = Zy(11)DZs(u,) 7t

Now we can reduce the defining relation to

Z2(X’ﬁ)(V1) |:(D(x,ﬁ))71 S, D(x,ﬁ)} <Zz(x’ﬁ)(un)>_l

_ Zl(y,ﬁ)(un) |:D(y,|7) S, (D(y,f/))fl} (Zl(y,ﬁ)(vl))_l’

if SUY) commutes (element wise) with Z{X) and Z2(y).
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undeformed case, and n = 2, and n = 3 cases.
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Exchange Operator

This has been used to construct exchange operators in the
undeformed case, and n = 2, and n = 3 cases.

Recall in the n > 4 case the postulated ansatz for the factorisation
was inconsistent - the outer most factors will now have g-difference
terms.
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Exchange Operator

This has been used to construct exchange operators in the
undeformed case, and n = 2, and n = 3 cases.

Recall in the n > 4 case the postulated ansatz for the factorisation
was inconsistent - the outer most factors will now have g-difference
terms.

This seems to represent a serious obstruction to constructing the
exchange operator - unclear whether to expect a multiplication
operator (by shifted variables) to work or not
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solutions to the YBE in the class of differential (g-difference)
representations of sl, (Ug(sl,)). A key feature here is a
factorisation property of the L-operators.
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allowing for its factorisation by transposition operators.
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solutions to the YBE in the class of differential (g-difference)
representations of sl, (Ug(sl,)). A key feature here is a
factorisation property of the L-operators.

» We explain how the R-matrix can be interpretted as
performing a parameter permutation of the L-operator,
allowing for its factorisation by transposition operators.

» We described explicitly all but one of the transposition

operators in the Ug(sl,) case, and prove they obey the
necessary symmetric group relations.
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Summary

» We introduced the RLL-method as a means for obtaining
solutions to the YBE in the class of differential (g-difference)
representations of sl, (Ug(sl,)). A key feature here is a
factorisation property of the L-operators.

» We explain how the R-matrix can be interpretted as
performing a parameter permutation of the L-operator,
allowing for its factorisation by transposition operators.

» We described explicitly all but one of the transposition
operators in the Ug(sl,) case, and prove they obey the
necessary symmetric group relations.

» We explain how the failure of the factorisation property for
the Uq(sls) L-operator represents an obstruction to
constructing the missing “exchange” operator.
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Questions?
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