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TL categories on Non-Orientable Surfaces

Motivation

Motivation

Enriching the structure skein-modules...

Construct interesting low-dim “cobordism categories” amenable to
rep th study:

▶ Combinatorial Description

▶ Finite Dimensional Hom-spaces

▶ More structure? (tensor product, duals, braidings ... etc)

In particular, we consider nested (0, 1, 2) - “cobordism categories”.
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TL categories on Non-Orientable Surfaces

Motivation

Tangles (Links)
in Σ× I

SQ(α,β,γ) SQ+(α,β)
TL(α)

∗ UA(α,β,γ) ∗ A(α,β)

UVTL(α,γ) VTL(α)

P3(α, β, γ)? P2(α, γ)? P1(α, β)? VJ(α) J(α)

Sk.
Sk. (Or .) Sk. (Disc)

Stab. Stab.
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TL categories on Non-Orientable Surfaces

Temperley-Lieb Category

Example: Temperley-Lieb Category

Fix K. For α ∈ K, TL(α) is a (0, 1, 2) - “cobordism category”
where:

▶ Objects: (0, 1) part - points in [0, 1] (skeletally N)
▶ Morphisms: (1, 2) part - Hom(n,m) is K-linear combinations

of type n,m “TL-diagrams”, (embedded intervals in [0, 1]2):

∈ Hom(3, 3), ∈ Hom(1, 7).

up to homeomorphisms of [0, 1]2 (ambient isotopy).
{ classes of diagrams } ↔ { xless pair ptns of V (n,m) }
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TL categories on Non-Orientable Surfaces

Temperley-Lieb Category

Example: Temperley-Lieb Category

Composition: “defined” on diagrams by vertically stacking
((ϕ, ψ) 7→ ψ ◦ ϕ):

D2 ◦ D1 = ◦ = = α = αD2#D1

Generically D2 ◦ D1 = αL(D1,D2)D2#D1.

Tensor Product: “defined” on diagrams by horizontally stacking:

D2 ⊗ D1 = ⊗ = =

(n1 ⊗ n2 = n1 + n2).
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TL categories on Non-Orientable Surfaces

Square with Bands Diagrams

Our Aim

TL-category: a nested (0, 1, 2) “cobordism category” with

▶ 0-manifolds: points ⊔finite∗.
▶ 1-manifolds: interval [0, 1].

▶ 2-manifolds: square [0, 1]2.

We essentially will consider the question of when the “2” can have
different surface type (especially unorientable) i.e.

[0, 1]2 −→ Σ.

we will restrict to surface types Σ with one boundary component.
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Square with Bands Diagrams

How to draw TL diagrams on other surfaces?

Proceed concretely; attach “handles” to our square frame

described by a quadruple (P, s, f ,E ).
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TL categories on Non-Orientable Surfaces

Square with Bands Diagrams

SWB diagrams
Square with bands (SWB) diagram encoded by Θ = (P, s, f ,E )
(type n,m)

E

n...

m...

f1

f2

f3

...

...

...E

...

...

...E
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TL categories on Non-Orientable Surfaces

Square with Bands Diagrams

SWB diagrams - Isotopy

SWB diagrams - Isotopy

Unlike the TL-case, there is a non-trivial isotopy move on
diagrams: We can remove“turnbacks” by “pull-throughs”

...

...

...E ′

(i, j)

J(i,j)7→

...

...

...E ′

(P, s, f ,E ′ ⊔ {{(i , j), (i , j + 1)}}) 7→ (P, s, f ′, o(E ′′))

Generate an equivalence relation with this move.
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SWB diagrams - Isotopy

Fact: If Θ has no internal components, then its isotopy class has a
unique representative w/o turnbacks
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TL categories on Non-Orientable Surfaces

Square with Bands Diagrams

SWB diagrams - Handlesliding

SWB diagrams - Handlesliding
Different realisations of a surface are related by handleslides:

↑ 7→

This induces moves on SWB diagrams:

↑ 7→
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TL categories on Non-Orientable Surfaces

Square with Bands Diagrams

SWB diagrams - Handlesliding

SWB diagrams - Handlesliding
Generically: “Two bands involved”

...

...

...

...
E

σ(i′)

σ(i)

σ(i + ϵ)

sq=1← [

...

...

...

...

E

sq

i

i′

i + ϵ↑
sq=07→

...

...

...

...
E

σ(i)

σ(i′)

σ(i + ϵ)

(P, s, f ,E ) 7→ (σ(P), s ′ ◦ σ−1, f ′ ◦ σ−1, o(E ) ∪ {“new red arcs”})
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TL categories on Non-Orientable Surfaces

Square with Bands Diagrams

SWB diagrams - Handlesliding

SWB diagrams - Handleslide Equivalence

On the level of the surface, we can define an equivalence relation
by (P, s) ∼ (P ′, s ′) if (P ′, s ′) can be obtained from (P, s) by a
finite sequence of handleslides, e.g.

↑ 7→
↑

7→

Defines an equivalence relation on isotopy classes of SWB
diagrams - call this Handleslide (HS) Equivalence

.
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SWB diagrams - Handleslide Equivalence

Θ =

Associate the “reduced” sequence Ai for each edge outside the
tree, e.g.

A2 = (3,+) ◦ (4,−) ◦ (1,+) ◦ (2,+)
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Square with Bands Diagrams

SWB diagrams - Handlesliding

SWB diagrams - Handleslide Equivalence

A1(Θ) =
A2(Θ) =
A5(Θ) =

, A3(Θ) = ,

A4(Θ) = ,
A6(Θ) =
Θ =

.

⟨A2,A3,A4 | A3A2 = A4, A2A4 = A4A
−1
2 ⟩ ≃ Z ⋊ Z.

(Chord Diag. Pres. of Mapping Class Group - Bene 2009)
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Square with Bands Diagrams

SWB diagrams - Handlesliding

Handleslide Equivalence - Caravan form

FACT: Any surface (P, s) has a unique representative in the
following caravan form:

(P, s) ∼

where g , b ∈ Z≥0,

AND t ∈ {0, 1, 2}.
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The Category SQ
Composition: Hom(n,m)× Hom(m, l)→ Hom(n, l) is given by

Θ2 ◦Θ1 = αL(Θ1,Θ2)Θ2#Θ1:

Θ2 ◦Θ1 = ◦

= =
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Proof.
Main obstacle is well-definedness of composition:

∼iso.
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Basic Facts

The Category SQ - Basic Facts

Fact 0: We have two (wide) subcategories:

▶ SQ+ = SQ+(α, β) with diagrams on orientable surfaces,

▶ TL = TL(α) with diagrams on squares.

Fact 1: We have a contravariant endofunctor ( )∗ : SQ → SQ,
given by n∗ = n and which flips diagrams upside down.

Fact 2: For any Θ ∈ Sq(n,m), there exist unique integers ls , lt
and lu, and Θ′ ∈ Sq(n,m) without closed loops, such that:

Θ = αlsβltγ lu Θ′ ∈ Hom(n,m).
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The Category SQ - Basic Facts

Fact 3: Any morphism Θ ∈ Hom(n,m) has a factorisation in
terms of diagrams of the following form

(AND)

E

. . .

. . .

f1

f2
E

f

. . .

. . .

. . .

. . .

E
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Basic Facts

The Category SQ - Tensor Product

Recall: In TL case we had a tensor product given by “horizontal
stacking” of diagrams:

⊗ =

Can we extend this to a tensor product on SQ which has
n1 ⊗ n2 = n1 + n2 on objects. What should Θ⊗Θ′ be for SWB
diagrams??
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Basic Facts

The Category SQ - Tensor Product

Indirect answer: Step 1 - Put the identity diagram on the left:

Θ2 = E2

n2...

...
m2

7→ E2

n...

...
n

n2...

...
m2

(?)
:= idn ⊗Θ2
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The Category SQ - Tensor Product

Indirect answer: Step 2 - Put the identity diagram on the right:
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The Category SQ - Tensor Product
Indirect answer: Step 3 - Insist upon functoriality:

Θ1 ⊗Θ2 = (idm1 ⊗Θ2) ◦ (Θ1 ⊗ idn2)
?
= (Θ1 ⊗ idm2) ◦ (idn1 ⊗Θ2)

E1
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...
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Basic Facts

The Category SQ - Tensor Product

Theorem
This defines a tensor product on SQ.

and

Proposition

The following is a monoidal generating set:

id0 = , id1 = , U = ,

V = , Ti ,j =

i j

, Mk =

k

.
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Basic Facts

The Category SQ - Tensor Product - More Facts!

Fact 4: The tensor product restricts to “horizontal stacking” on
the TL subcategory.

Fact 5: There is a rigid monoidal structure with n† = n and the
usual TL eval. Vn ∈ Hom(2n, 0) and coeval. Un ∈ Hom(0, 2n)
diagrams. Write ( )† : SQ → SQ for the associated contravariant
functor:

Θ = Θ† =
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Tm,m′ ◦ (Θ⊗Θ′) = (Θ′ ⊗Θ) ◦ Tn′,n

These define a braiding T : ⊗ → ⊗op !!

Note: The Ti ,j are not invertible, so this doesn’t make SQ braided
monoidal. However, they do obey the (categorical) YBE:

(Tj ,k ⊗ idi ) ◦ (idj ⊗ Ti ,k) ◦ (Ti ,j ⊗ idk)

= (idk ⊗ Ti ,j) ◦ (Ti ,k ⊗ idj) ◦ (idi ⊗ Tj ,k)
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Basic Facts

The Category SQ - Tensor Product - More Facts!

Fact 7: Consider the Mn ∈ Hom(m,m):

Mm ◦Θ = ∼ := R(Θ)◦Mn

i.e. M : id⇒ R, where R : SQ → SQ is R(Θ) = (Θ∗)†.
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Finite Dimensional Quotients

The Infinity problem

PROBLEM: Hom-sets are infinite dimensional.

Scheme for “finitising”: Find a target category T with a “finitising
functor” F : SQ+ → T (full, ess. surj., monoidal).

SQ UT (? )

Ker SQ+ T

/Ker

F ≃ /Ker

? .

Try to lift, creating an “unorientable extension” of T , UT with
UF : SQ → UT
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Finite Dimensional Quotients

The Infinity problem
PROBLEM: Hom-sets are infinite dimensional.

If you’re like me, it bothers you that SQ is not braided...
IDEA: lets force it to be!

The smallest such quotient of SQ is obtained by imposing
relations R+

1 and R2:

R+
1= ,

R2= ,

This is stabilisation! *only need R+
1 if α non-invertible.

Proposition

SQ+(α, α)/(R2&R+
1 ) = VTL(α) (R2 forces α = γ).
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Finite Dimensional Quotients

The Infinity problem

Another very natural demand is that Hom(0, 0) ≃ K.

This requires
imposing the relation R1:

R−
1=

R+
1=

Conjecture

SQ/R1 has finite dimensional hom-spaces.

▶ Hom(1, 1) = K

{
, ,

}
≃ K⟨a | a3 = a⟩,

▶ dim(Hom(2, 2)) ≥ 23.
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▶ Hom(1, 1) = K

{
, ,

}
≃ K⟨a | a3 = a⟩,

▶ dim(Hom(2, 2)) ≥ 23.



32/35

TL categories on Non-Orientable Surfaces

Square with Bands Diagrams

Finite Dimensional Quotients

The Infinity problem

Another very natural demand is that Hom(0, 0) ≃ K. This requires
imposing the relation R1:

R−
1=

R+
1=

Conjecture

SQ/R1 has finite dimensional hom-spaces.

▶ Hom(1, 1) = K

{
, ,

}
≃ K⟨a | a3 = a⟩,

▶ dim(Hom(2, 2)) ≥ 23.



32/35

TL categories on Non-Orientable Surfaces

Square with Bands Diagrams

Finite Dimensional Quotients

The Infinity problem

Another very natural demand is that Hom(0, 0) ≃ K. This requires
imposing the relation R1:

R−
1=

R+
1=

Conjecture

SQ/R1 has finite dimensional hom-spaces.

▶ Hom(1, 1) = K

{
, ,

}
≃ K⟨a | a3 = a⟩,

▶ dim(Hom(2, 2)) ≥ 23.



32/35

TL categories on Non-Orientable Surfaces

Square with Bands Diagrams

Finite Dimensional Quotients

The Infinity problem

Another very natural demand is that Hom(0, 0) ≃ K. This requires
imposing the relation R1:

R−
1=

R+
1=

Conjecture

SQ/R1 has finite dimensional hom-spaces.

▶ Hom(1, 1) = K

{
, ,

}
≃ K⟨a | a3 = a⟩,

▶ dim(Hom(2, 2)) ≥ 23.



33/35

TL categories on Non-Orientable Surfaces

Square with Bands Diagrams

Finite Dimensional Quotients

Example in SQ/R1

Sample calculation in SQ/R1:
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Square with Bands Diagrams

Finite Dimensional Quotients

Example in SQ/R1

Sample calculation in SQ/R1:

Ti ,j◦Tj ,i◦Ti ,j =

i j

= Ti ,j mod R1
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Outlook

▶ Can we prove this conjecture? (Combinatorially?)

▶ Can we give a more universal description?

▶ Can we find presentations for SQ and its quotients?

(idj ⊗Mi ) ◦ (Mj ⊗ idi ) ◦Mi+j = Ti ,j ◦ (idi+j ⊗M0)

▶ What does the (monoidal) representation theory look like?

▶ What about non-functorial quotients? e.g. terminate at a
finite genus
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Conclusion

Thank You!

Questions?
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