

# Temperley-Lieb categories on Non-Orientable Surfaces

Benjamin Morris<sup>1</sup>
Joint work with Dionne Ibarra<sup>2</sup> and Gabriel Montoya-Vega<sup>3</sup>

<sup>1</sup>University of Leeds <sup>2</sup>Monash University, Melbourne <sup>3</sup>CUNY Graduate Center, NYC

The Yang-Baxter Equation and all that, Bedlewo, June 2025





### Motivation

Enriching the structure skein-modules...

#### Motivation

Enriching the structure skein-modules...

Construct interesting low-dim "cobordism categories" amenable to rep th study:

- ► Combinatorial Description
- ► Finite Dimensional Hom-spaces
- ► More structure? (tensor product, duals, braidings ... etc)

#### Motivation

Enriching the structure skein-modules...

Construct interesting low-dim "cobordism categories" amenable to rep th study:

- Combinatorial Description
- ► Finite Dimensional Hom-spaces
- ► More structure? (tensor product, duals, braidings ... etc)

In particular, we consider **nested** (0,1,2) - "cobordism categories".



Fix  $\mathbb{K}$ . For  $\alpha \in \mathbb{K}$ ,  $\mathit{TL}(\alpha)$  is a (0,1,2) - "cobordism category" where:

Fix  $\mathbb{K}$ . For  $\alpha \in \mathbb{K}$ ,  $\mathit{TL}(\alpha)$  is a (0,1,2) - "cobordism category" where:

▶ **Objects:** (0,1) part

Fix  $\mathbb{K}$ . For  $\alpha \in \mathbb{K}$ ,  $\mathit{TL}(\alpha)$  is a (0,1,2) - "cobordism category" where:

▶ **Objects:** (0,1) part - points in [0,1] (skeletally  $\mathbb{N}$ )

Fix  $\mathbb{K}$ . For  $\alpha \in \mathbb{K}$ ,  $\mathit{TL}(\alpha)$  is a (0,1,2) - "cobordism category" where:

- ▶ **Objects:** (0,1) part points in [0,1] (skeletally  $\mathbb{N}$ )
- $\blacktriangleright$  Morphisms: (1,2) part

Fix  $\mathbb{K}$ . For  $\alpha \in \mathbb{K}$ ,  $\mathit{TL}(\alpha)$  is a (0,1,2) - "cobordism category" where:

- ▶ **Objects:** (0,1) part points in [0,1] (skeletally  $\mathbb{N}$ )
- ▶ Morphisms: (1,2) part Hom(n,m) is  $\mathbb{K}$ -linear combinations of type n,m "TL-diagrams", (embedded intervals in  $[0,1]^2$ ):



up to homeomorphisms of  $[0,1]^2$  (ambient isotopy).

Fix  $\mathbb{K}$ . For  $\alpha \in \mathbb{K}$ ,  $\mathit{TL}(\alpha)$  is a (0,1,2) - "cobordism category" where:

- ▶ **Objects:** (0,1) part points in [0,1] (skeletally  $\mathbb{N}$ )
- ▶ Morphisms: (1,2) part Hom(n,m) is  $\mathbb{K}$ -linear combinations of type n,m "TL-diagrams", (embedded intervals in  $[0,1]^2$ ):



up to homeomorphisms of  $[0,1]^2$  (ambient isotopy).  $\{ \text{ classes of diagrams } \} \leftrightarrow \{ \text{ xless pair ptns of } V(n,m) \}$ 

Composition: "defined" on diagrams by vertically stacking  $((\phi,\psi)\mapsto\psi\circ\phi)$ :

Composition: "defined" on diagrams by vertically stacking  $((\phi, \psi) \mapsto \psi \circ \phi)$ :

Composition: "defined" on diagrams by vertically stacking  $((\phi, \psi) \mapsto \psi \circ \phi)$ :

Generically  $D_2 \circ D_1 = \alpha^{L(D_1,D_2)} D_2 \# D_1$ .

Composition: "defined" on diagrams by vertically stacking  $((\phi, \psi) \mapsto \psi \circ \phi)$ :

Generically  $D_2 \circ D_1 = \alpha^{L(D_1,D_2)} D_2 \# D_1$ .

Tensor Product: "defined" on diagrams by horizontally stacking:

Composition: "defined" on diagrams by vertically stacking  $((\phi, \psi) \mapsto \psi \circ \phi)$ :

Generically  $D_2 \circ D_1 = \alpha^{L(D_1,D_2)} D_2 \# D_1$ .

Tensor Product: "defined" on diagrams by horizontally stacking:

$$D_2\otimes D_1=igcup_{QQ}\otimes igcup_{QQ}=igcup_{QQ}\otimes igcup_{QQ}$$

Composition: "defined" on diagrams by vertically stacking  $((\phi,\psi)\mapsto\psi\circ\phi)$ :

Generically  $D_2 \circ D_1 = \alpha^{L(D_1,D_2)} D_2 \# D_1$ .

<u>Tensor Product:</u> "defined" on diagrams by horizontally stacking:

$$D_2\otimes D_1=igcup_{>>>}\otimesigcup_{>>>}=igcup_{>>>}=igcup_{>>>}$$

$$(n_1 \otimes n_2 = n_1 + n_2).$$

TL-category: a nested (0,1,2) "cobordism category" with

- ► 0-manifolds: points ⊔<sub>finite</sub>\*.
- ► 1-manifolds: interval [0,1].
- $\triangleright$  2-manifolds: square  $[0,1]^2$ .

TL-category: a nested (0,1,2) "cobordism category" with

- ▶ 0-manifolds: points  $\sqcup_{finite}*$ .
- ► 1-manifolds: interval [0, 1].
- ightharpoonup 2-manifolds: square  $[0,1]^2$ .

We essentially will consider the question of when the "2" can have different surface type (especially **unorientable**) i.e.

$$[0,1]^2 \longrightarrow \Sigma.$$

TL-category: a nested (0,1,2) "cobordism category" with

- ► 0-manifolds: points ⊔<sub>finite</sub>\*.
- ► 1-manifolds: interval [0, 1].
- ► 2-manifolds: square  $[0,1]^2$ .

We essentially will consider the question of when the "2" can have different surface type (especially **unorientable**) i.e.

$$[0,1]^2 \longrightarrow \Sigma.$$

we will restrict to surface types  $\Sigma$  with one boundary component.







Proceed concretely; attach "handles" to our square frame



described by a quadruple (P, s, f, E).

Proceed concretely; attach "handles" to our square frame



described by a quadruple (P, s, f, E).



# SWB diagrams

**Square with bands (SWB)** diagram encoded by  $\Theta = (P, s, f, E)$  (type n, m)



Unlike the TL-case, there is a non-trivial isotopy move on diagrams: We can remove "turnbacks" by "pull-throughs"



Unlike the TL-case, there is a non-trivial isotopy move on diagrams: We can remove "turnbacks" by "pull-throughs"



$$(P, s, f, E' \sqcup \{\{(i,j), (i,j+1)\}\}) \mapsto (P, s, f', o(E''))$$

Unlike the TL-case, there is a non-trivial isotopy move on diagrams: We can remove "turnbacks" by "pull-throughs"



$$(P, s, f, E' \sqcup \{\{(i, j), (i, j + 1)\}\}) \mapsto (P, s, f', o(E''))$$

Generate an equivalence relation with this move.

<u>Fact:</u> If  $\Theta$  has no internal components, then its isotopy class has a **unique** representative w/o turnbacks

#### SWB diagrams - Isotopy

<u>Fact:</u> If  $\Theta$  has no internal components, then its isotopy class has a **unique** representative w/o turnbacks



#### SWB diagrams - Isotopy

<u>Fact:</u> If  $\Theta$  has no internal components, then its isotopy class has a **unique** representative w/o turnbacks



Different realisations of a surface are related by **handleslides**:

Different realisations of a surface are related by handleslides:



Different realisations of a surface are related by **handleslides**:



This induces moves on SWB diagrams:

Different realisations of a surface are related by **handleslides**:



This induces moves on SWB diagrams:



# SWB diagrams - Handlesliding Generically: "Two bands involved"

Generically: "Two bands involved"



Generically: "Two bands involved"



$$(P,s,f,E) \mapsto (\sigma(P),s' \circ \sigma^{-1},f' \circ \sigma^{-1},o(E) \cup \{\text{``new red arcs''}\})$$

On the level of the surface, we can define an equivalence relation by  $(P,s)\sim (P',s')$  if (P',s') can be obtained from (P,s) by a finite sequence of handleslides, e.g.

On the level of the surface, we can define an equivalence relation by  $(P,s)\sim (P',s')$  if (P',s') can be obtained from (P,s) by a finite sequence of handleslides, e.g.



On the level of the surface, we can define an equivalence relation by  $(P,s) \sim (P',s')$  if (P',s') can be obtained from (P,s) by a finite sequence of handleslides, e.g.



On the level of the surface, we can define an equivalence relation by  $(P,s) \sim (P',s')$  if (P',s') can be obtained from (P,s) by a finite sequence of handleslides, e.g.



Defines an equivalence relation on **isotopy classes** of SWB diagrams - call this **Handleslide (HS) Equivalence**.



# SWB diagrams - Handleslide Equivalence





Associate the "reduced" sequence  $A_i$  for each edge outside the tree, e.g.

$$A_2 = (3, +) \circ (4, -) \circ (1, +) \circ (2, +)$$





$$\langle A_2, A_3, A_4 \mid A_3 A_2 = A_4, \ A_2 A_4 = A_4 A_2^{-1} \rangle \simeq \mathbb{Z} \rtimes \mathbb{Z}.$$



 $\langle A_2, A_3, A_4 \mid A_3A_2 = A_4, \ A_2A_4 = A_4A_2^{-1} \rangle \simeq \mathbb{Z} \rtimes \mathbb{Z}.$  (Chord Diag. Pres. of Mapping Class Group - Bene 2009)

#### Handleslide Equivalence - Caravan form

FACT: Any surface (P, s) has a unique representative in the following **caravan form**:



where  $g, b \in \mathbb{Z}_{\geq 0}$ ,

#### Handleslide Equivalence - Caravan form

FACT: Any surface (P, s) has a unique representative in the following **caravan form**:

$$(P,s) \sim \left\{ \begin{array}{c} \begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right\}$$

where  $g, b \in \mathbb{Z}_{\geq 0}$ , AND  $t \in \{0, 1, 2\}$ .

#### Handleslide Equivalence - Caravan form

FACT: Any surface (P, s) has a unique representative in the following **caravan form**:



where  $g, b \in \mathbb{Z}_{\geq 0}$ , AND  $t \in \{0, 1, 2\}$ .

Fix  $\mathbb{K}$  a comm. ring with  $\alpha, \beta, \gamma \in \mathbb{K}$ .

Fix  $\mathbb{K}$  a comm. ring with  $\alpha, \beta, \gamma \in \mathbb{K}$ . Define  $\mathcal{SQ} = \mathcal{SQ}(\alpha, \beta, \gamma)$  as the  $\mathbb{K}$ -linear category with:

Fix  $\mathbb{K}$  a comm. ring with  $\alpha, \beta, \gamma \in \mathbb{K}$ . Define  $\mathcal{SQ} = \mathcal{SQ}(\alpha, \beta, \gamma)$  as the  $\mathbb{K}$ -linear category with:

ightharpoonup Objects: non-negative integers  $\mathbb N$ 

Fix  $\mathbb{K}$  a comm. ring with  $\alpha, \beta, \gamma \in \mathbb{K}$ . Define  $\mathcal{SQ} = \mathcal{SQ}(\alpha, \beta, \gamma)$  as the  $\mathbb{K}$ -linear category with:

- lacktriangle Objects: non-negative integers  $\Bbb N$
- ► Morphisms: Hom(n, m) consists of  $\mathbb{K}$ -linear combinations of HS classes of type (n, m) SWB diagrams,  $[\Theta]_{HS}$ ,

Fix  $\mathbb{K}$  a comm. ring with  $\alpha, \beta, \gamma \in \mathbb{K}$ . Define  $\mathcal{SQ} = \mathcal{SQ}(\alpha, \beta, \gamma)$  as the  $\mathbb{K}$ -linear category with:

- lacktriangle Objects: non-negative integers  $\mathbb N$
- ► Morphisms:  $\operatorname{Hom}(n, m)$  consists of  $\mathbb{K}$ -linear combinations of HS classes of type (n, m) SWB diagrams,  $[\Theta]_{HS}$ , modulo the **delooping** relations *e.g.*



$$\frac{\text{Composition: } \operatorname{Hom}(n,m) \times \operatorname{Hom}(m,l) \to \operatorname{Hom}(n,l) \text{ is given by }}{\overline{\Theta_2} \circ \overline{\Theta_1} = \alpha^{L(\Theta_1,\Theta_2)} \, \overline{\Theta_2 \# \Theta_1}}$$
:

Composition:  $\operatorname{Hom}(n,m) \times \operatorname{Hom}(m,l) \to \operatorname{Hom}(n,l)$  is given by  $\overline{\Theta_2} \circ \overline{\Theta_1} = \alpha^{L(\Theta_1,\Theta_2)} \overline{\Theta_2 \# \Theta_1}$ :



Composition:  $\operatorname{Hom}(n,m) \times \operatorname{Hom}(m,l) \to \operatorname{Hom}(n,l)$  is given by  $\overline{\Theta_2} \circ \overline{\Theta_1} = \alpha^{L(\Theta_1,\Theta_2)} \overline{\Theta_2 \# \Theta_1}$ :



Theorem This defines a  $\mathbb{K}$ -linear category

Theorem

This defines a  $\mathbb{K}$ -linear category

Proof.

Main obstacle is well-definedness of composition:

Theorem

This defines a K-linear category

Proof.

Main obstacle is well-definedness of composition:





# The Category $\mathcal{SQ}$ - Basic Facts

Basic Facts

# The Category $\mathcal{SQ}$ - Basic Facts

Fact 0: We have two (wide) subcategories:

- $\triangleright$   $\mathcal{SQ}^+ = \mathcal{SQ}^+(\alpha, \beta)$  with diagrams on orientable surfaces,
- ►  $TL = TL(\alpha)$  with diagrams on squares.

Basic Facts

# The Category $\mathcal{SQ}$ - Basic Facts

**Fact 0**: We have two (wide) subcategories:

- $\triangleright$   $\mathcal{SQ}^+ = \mathcal{SQ}^+(\alpha, \beta)$  with diagrams on orientable surfaces,
- ►  $TL = TL(\alpha)$  with diagrams on squares.

<u>Fact 1</u>: We have a contravariant endofunctor  $(_{-})^* : \mathcal{SQ} \to \mathcal{SQ}$ , given by  $n^* = n$  and which flips diagrams upside down.

# The Category $\mathcal{SQ}$ - Basic Facts

**Fact 0**: We have two (wide) subcategories:

- $\triangleright$   $\mathcal{SQ}^+ = \mathcal{SQ}^+(\alpha, \beta)$  with diagrams on orientable surfaces,
- ►  $TL = TL(\alpha)$  with diagrams on squares.

**Fact 1:** We have a contravariant endofunctor  $(\_)^* : \mathcal{SQ} \to \mathcal{SQ}$ , given by  $n^* = n$  and which flips diagrams upside down.

**<u>Fact 2</u>**: For any  $\Theta \in Sq(n, m)$ , there exist **unique** integers  $l_s$ ,  $l_t$  and  $l_u$ , and  $\Theta' \in Sq(n, m)$  without closed loops, such that:

$$\overline{\Theta} = \alpha^{I_s} \beta^{I_t} \gamma^{I_u} \overline{\Theta'} \in \mathsf{Hom}(n, m).$$

# The Category $\mathcal{SQ}$ - Basic Facts

<u>Fact 3</u>: Any morphism  $\overline{\Theta} \in \operatorname{Hom}(n,m)$  has a factorisation in terms of diagrams of the following form

-Square with Bands Diagrams

# The Category $\mathcal{SQ}$ - Basic Facts

<u>Fact 3</u>: Any morphism  $\overline{\Theta} \in \text{Hom}(n, m)$  has a factorisation in terms of diagrams of the following form (AND)







**Recall:** In TL case we had a tensor product given by "horizontal stacking" of diagrams:

# The Category $\mathcal{SQ}$ - Tensor Product

**Recall:** In TL case we had a tensor product given by "horizontal stacking" of diagrams:



**Recall:** In TL case we had a tensor product given by "horizontal stacking" of diagrams:



Can we extend this to a tensor product on SQ which has  $n_1 \otimes n_2 = n_1 + n_2$  on objects.

**Recall:** In TL case we had a tensor product given by "horizontal stacking" of diagrams:



Can we extend this to a tensor product on  $\mathcal{SQ}$  which has  $n_1 \otimes n_2 = n_1 + n_2$  on objects. What should  $\overline{\Theta} \otimes \overline{\Theta'}$  be for SWB diagrams??

**Indirect answer:** Step 1 - Put the identity diagram on the left:

**Indirect answer:** Step 1 - Put the identity diagram on the left:



**Indirect answer:** Step 2 - Put the identity diagram on the right:





**Indirect answer:** Step 3 - Insist upon functoriality:

### The Category $\mathcal{SQ}$ - Tensor Product

**Indirect answer:** Step 3 - Insist upon functoriality:

$$\overline{\Theta_1} \otimes \overline{\Theta_2} = \overline{\left(\mathsf{id}_{m_1} \otimes \Theta_2\right)} \circ \overline{\left(\Theta_1 \otimes \mathsf{id}_{n_2}\right)} \stackrel{?}{=} \overline{\left(\Theta_1 \otimes \mathsf{id}_{m_2}\right)} \circ \overline{\left(\mathsf{id}_{n_1} \otimes \Theta_2\right)}$$

**Indirect answer:** Step 3 - Insist upon functoriality:

$$\overline{\Theta_1} \otimes \overline{\Theta_2} = \overline{(\mathsf{id}_{m_1} \otimes \Theta_2)} \circ \overline{(\Theta_1 \otimes \mathsf{id}_{n_2})} \stackrel{?}{=} \overline{(\Theta_1 \otimes \mathsf{id}_{m_2})} \circ \overline{(\mathsf{id}_{n_1} \otimes \Theta_2)}$$





Theorem This defines a tensor product on SQ.

Theorem This defines a tensor product on SQ. and

**Theorem** 

This defines a tensor product on SQ.

and

Basic Facts

#### Proposition

The following is a monoidal generating set:



<u>Fact 4</u>: The tensor product restricts to "horizontal stacking" on the TL subcategory.

<u>Fact 4</u>: The tensor product restricts to "horizontal stacking" on the TL subcategory.

<u>Fact 5</u>: There is a rigid monoidal structure with  $n^{\dagger}=n$  and the usual TL eval.  $V_n \in Hom(2n,0)$  and coeval.  $U_n \in Hom(0,2n)$  diagrams. Write  $(\_)^{\dagger}: \mathcal{SQ} \to \mathcal{SQ}$  for the associated contravariant functor:



**<u>Fact 6</u>**: Consider the  $\mathbb{T}_{i,j} \in \text{Hom}(i \otimes j, j \otimes i)$ :

#### **Fact 6:** Consider the $\mathbb{T}_{i,j} \in \mathsf{Hom}(i \otimes j, j \otimes i)$ :



**Fact 6:** Consider the  $\mathbb{T}_{i,j} \in \text{Hom}(i \otimes j, j \otimes i)$ :



Square with Bands Diagrams

### The Category $\mathcal{SQ}$ - Tensor Product - More Facts!

**Fact 6:** Consider the  $\mathbb{T}_{i,j} \in \text{Hom}(i \otimes j, j \otimes i)$ :



**Fact 6:** Consider the  $\mathbb{T}_{i,j} \in \mathsf{Hom}(i \otimes j, j \otimes i)$ :



#### **Fact 6**: Consider the $\mathbb{T}_{i,j} \in \mathsf{Hom}(i \otimes j, j \otimes i)$ :



### The Category SQ - Tensor Product - More Facts!

#### **Fact 6**: Consider the $\mathbb{T}_{i,j} \in \text{Hom}(i \otimes j, j \otimes i)$ :

$$\mathbb{T}_{m,m'}\circ(\Theta\otimes\Theta')\sim =(\Theta'\otimes\Theta)\circ\mathbb{T}_{n',n}$$

These define a braiding  $\mathbb{T}: \otimes \to \otimes^{\mathsf{op}} !!$ 

### The Category SQ - Tensor Product - More Facts!

**<u>Fact 6</u>**: Consider the  $\mathbb{T}_{i,j} \in \text{Hom}(i \otimes j, j \otimes i)$ :

$$\mathbb{T}_{m,m'}\circ(\Theta\otimes\Theta')=(\Theta'\otimes\Theta)\circ\mathbb{T}_{n',n}$$

These define a braiding  $\mathbb{T}: \otimes \to \otimes^{op} !!$ 

Note: The  $\mathbb{T}_{i,j}$  are not invertible, so this doesn't make  $\mathcal{SQ}$  braided monoidal. However, they do obey the (categorical) **YBE**:

$$\begin{split} &(\mathbb{T}_{j,k} \otimes \mathsf{id}_i) \circ (\mathsf{id}_j \otimes \mathbb{T}_{i,k}) \circ (\mathbb{T}_{i,j} \otimes \mathsf{id}_k) \\ &= (\mathsf{id}_k \otimes \mathbb{T}_{i,j}) \circ (\mathbb{T}_{i,k} \otimes \mathsf{id}_j) \circ (\mathsf{id}_i \otimes \mathbb{T}_{j,k}) \end{split}$$

### The Category $\mathcal{SQ}$ - Tensor Product - More Facts!

**Fact 7:** Consider the  $\mathbb{M}_n \in \text{Hom}(m, m)$ :



#### **Fact 7:** Consider the $\mathbb{M}_n \in \text{Hom}(m, m)$ :



**Fact 7:** Consider the  $M_n \in \text{Hom}(m, m)$ :



#### **Fact 7:** Consider the $M_n \in \text{Hom}(m, m)$ :



#### **Fact 7:** Consider the $\mathbb{M}_n \in \text{Hom}(m, m)$ :



i.e.  $\mathbb{M}: \mathsf{id} \Rightarrow R$ , where  $R: \mathcal{SQ} \to \mathcal{SQ}$  is  $R(\Theta) = (\Theta^*)^{\dagger}$ .

PROBLEM: Hom-sets are infinite dimensional.

PROBLEM: Hom-sets are infinite dimensional.

Scheme for "finitising": Find a target category T with a "finitising functor"  $F: \mathcal{SQ}^+ \to T$  (full, ess. surj., monoidal).



PROBLEM: Hom-sets are infinite dimensional.

Scheme for "finitising": Find a target category T with a "finitising functor"  $F: \mathcal{SQ}^+ \to T$  (full, ess. surj., monoidal).



Try to lift, creating an "unorientable extension" of T, UT with  $UF: \mathcal{SQ} \to UT$ 

PROBLEM: Hom-sets are infinite dimensional.

PROBLEM: Hom-sets are infinite dimensional.

If you're like me, it bothers you that  $\mathcal{S}\mathcal{Q}$  is not braided...

PROBLEM: Hom-sets are infinite dimensional.

If you're like me, it bothers you that  $\mathcal{S}\mathcal{Q}$  is not braided...

IDEA: lets force it to be!

PROBLEM: Hom-sets are infinite dimensional.

If you're like me, it bothers you that  $\mathcal{SQ}$  is not braided...

IDEA: lets force it to be!

The smallest such quotient of SQ is obtained by imposing relations  $\mathcal{R}_1^+$  and  $\mathcal{R}_2$ :



PROBLEM: Hom-sets are infinite dimensional.

If you're like me, it bothers you that  $\mathcal{SQ}$  is not braided...

IDEA: lets force it to be!

The smallest such quotient of SQ is obtained by imposing relations  $\mathcal{R}_1^+$  and  $\mathcal{R}_2$ :



This is stabilisation! \*only need  $\mathcal{R}_1^+$  if  $\alpha$  non-invertible.

PROBLEM: Hom-sets are infinite dimensional.

If you're like me, it bothers you that  $\mathcal{S}\mathcal{Q}$  is not braided...

IDEA: lets force it to be!

The smallest such quotient of SQ is obtained by imposing relations  $\mathcal{R}_1^+$  and  $\mathcal{R}_2$ :



This is stabilisation! \*only need  $\mathcal{R}_1^+$  if  $\alpha$  non-invertible.

### Proposition

$$\mathcal{SQ}^+(\alpha,\alpha)/(\mathcal{R}_2\&\mathcal{R}_1^+) = VTL(\alpha) \ (\mathcal{R}_2 \ \text{forces} \ \alpha = \gamma).$$

Another very natural demand is that  $\text{Hom}(0,0)\simeq \mathbb{K}.$ 

Another very natural demand is that  $\text{Hom}(0,0)\simeq \mathbb{K}.$  This requires imposing the relation  $\mathcal{R}_1$ :



Another very natural demand is that  $\text{Hom}(0,0)\simeq \mathbb{K}.$  This requires imposing the relation  $\mathcal{R}_1$ :



### Conjecture

 $\mathcal{SQ}/\mathcal{R}_1$  has finite dimensional hom-spaces.

Another very natural demand is that  $\text{Hom}(0,0)\simeq \mathbb{K}.$  This requires imposing the relation  $\mathcal{R}_1$ :



#### Conjecture

 $SQ/R_1$  has finite dimensional hom-spaces.

$$\blacktriangleright \ \operatorname{\mathsf{Hom}}(1,1) = \mathbb{K}\left\{ \boxed{\phantom{A}}, \boxed{\phantom{A}}, \boxed{\phantom{A}} \right\} \simeq \mathbb{K}\langle a \mid a^3 = a \rangle$$

Another very natural demand is that  $\text{Hom}(0,0)\simeq \mathbb{K}.$  This requires imposing the relation  $\mathcal{R}_1$ :



#### Conjecture

 $\mathcal{SQ}/\mathcal{R}_1$  has finite dimensional hom-spaces.

$$\blacktriangleright \ \operatorname{\mathsf{Hom}}(1,1) = \mathbb{K} \left\{ \boxed{\phantom{A}}, \boxed{\phantom{A}}, \boxed{\phantom{A}} \right\} \simeq \mathbb{K} \langle a \mid a^3 = a \rangle$$

▶  $\dim(\text{Hom}(2,2)) \ge 23$ .

# Example in $\mathcal{SQ}/\mathcal{R}_1$

### Sample calculation in $\mathcal{SQ}/\mathcal{R}_1$ :



# Example in $\mathcal{SQ}/\mathcal{R}_1$

### Sample calculation in $SQ/R_1$ :



# Example in $\mathcal{SQ}/\mathcal{R}_1$

### Sample calculation in $SQ/R_1$ :



► Can we prove this conjecture? (Combinatorially?)

- ► Can we prove this conjecture? (Combinatorially?)
- ► Can we give a more universal description?

- ► Can we prove this conjecture? (Combinatorially?)
- ► Can we give a more universal description?
- lacktriangle Can we find presentations for  $\mathcal{SQ}$  and its quotients?

- ► Can we prove this conjecture? (Combinatorially?)
- ► Can we give a more universal description?
- ightharpoonup Can we find presentations for SQ and its quotients?

$$(\mathsf{id}_j \otimes \mathbb{M}_i) \circ (\mathbb{M}_j \otimes \mathsf{id}_i) \circ \mathbb{M}_{i+j} = \mathbb{T}_{i,j} \circ (\mathsf{id}_{i+j} \otimes \mathbb{M}_0)$$

- ► Can we prove this conjecture? (Combinatorially?)
- ► Can we give a more universal description?
- ► Can we find presentations for SQ and its quotients?

$$(\mathsf{id}_j \otimes \mathbb{M}_i) \circ (\mathbb{M}_j \otimes \mathsf{id}_i) \circ \mathbb{M}_{i+j} = \mathbb{T}_{i,j} \circ (\mathsf{id}_{i+j} \otimes \mathbb{M}_0)$$

▶ What does the (monoidal) representation theory look like?

- Can we prove this conjecture? (Combinatorially?)
- ► Can we give a more universal description?
- ► Can we find presentations for SQ and its quotients?

$$(\mathsf{id}_j \otimes \mathbb{M}_i) \circ (\mathbb{M}_j \otimes \mathsf{id}_i) \circ \mathbb{M}_{i+j} = \mathbb{T}_{i,j} \circ (\mathsf{id}_{i+j} \otimes \mathbb{M}_0)$$

- ► What does the (monoidal) representation theory look like?
- ► What about non-functorial quotients? e.g. terminate at a finite genus

### Thank You!

Questions?