

Temperley-Lieb categories on Non-Orientable Surfaces

Benjamin Morris¹
Joint work with Dionne Ibarra² and Gabriel Montoya-Vega³

¹University of Leeds ²Monash University, Melbourne ³CUNY Graduate Center, NYC

The Yang-Baxter Equation and all that, Bedlewo, June 2025

Motivation

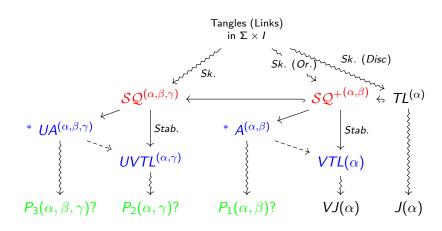
Enriching the structure skein-modules...

Motivation

Enriching the structure skein-modules...

Construct interesting low-dim "cobordism categories" amenable to rep th study:

- ► Combinatorial Description
- ► Finite Dimensional Hom-spaces
- ► More structure? (tensor product, duals, braidings ... etc)


Motivation

Enriching the structure skein-modules...

Construct interesting low-dim "cobordism categories" amenable to rep th study:

- Combinatorial Description
- ► Finite Dimensional Hom-spaces
- ► More structure? (tensor product, duals, braidings ... etc)

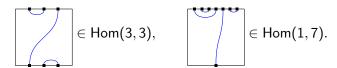
In particular, we consider **nested** (0,1,2) - "cobordism categories".

Fix \mathbb{K} . For $\alpha \in \mathbb{K}$, $\mathit{TL}(\alpha)$ is a (0,1,2) - "cobordism category" where:

Fix \mathbb{K} . For $\alpha \in \mathbb{K}$, $\mathit{TL}(\alpha)$ is a (0,1,2) - "cobordism category" where:

▶ **Objects:** (0,1) part

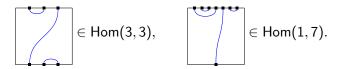
Fix \mathbb{K} . For $\alpha \in \mathbb{K}$, $\mathit{TL}(\alpha)$ is a (0,1,2) - "cobordism category" where:


▶ **Objects:** (0,1) part - points in [0,1] (skeletally \mathbb{N})

Fix \mathbb{K} . For $\alpha \in \mathbb{K}$, $\mathit{TL}(\alpha)$ is a (0,1,2) - "cobordism category" where:

- ▶ **Objects:** (0,1) part points in [0,1] (skeletally \mathbb{N})
- \blacktriangleright Morphisms: (1,2) part

Fix \mathbb{K} . For $\alpha \in \mathbb{K}$, $\mathit{TL}(\alpha)$ is a (0,1,2) - "cobordism category" where:


- ▶ **Objects:** (0,1) part points in [0,1] (skeletally \mathbb{N})
- ▶ Morphisms: (1,2) part Hom(n,m) is \mathbb{K} -linear combinations of type n,m "TL-diagrams", (embedded intervals in $[0,1]^2$):

up to homeomorphisms of $[0,1]^2$ (ambient isotopy).

Fix \mathbb{K} . For $\alpha \in \mathbb{K}$, $\mathit{TL}(\alpha)$ is a (0,1,2) - "cobordism category" where:

- ▶ **Objects:** (0,1) part points in [0,1] (skeletally \mathbb{N})
- ▶ Morphisms: (1,2) part Hom(n,m) is \mathbb{K} -linear combinations of type n,m "TL-diagrams", (embedded intervals in $[0,1]^2$):

up to homeomorphisms of $[0,1]^2$ (ambient isotopy). $\{ \text{ classes of diagrams } \} \leftrightarrow \{ \text{ xless pair ptns of } V(n,m) \}$

Composition: "defined" on diagrams by vertically stacking $((\phi,\psi)\mapsto\psi\circ\phi)$:

Composition: "defined" on diagrams by vertically stacking $((\phi, \psi) \mapsto \psi \circ \phi)$:

Composition: "defined" on diagrams by vertically stacking $((\phi, \psi) \mapsto \psi \circ \phi)$:

Generically $D_2 \circ D_1 = \alpha^{L(D_1,D_2)} D_2 \# D_1$.

Composition: "defined" on diagrams by vertically stacking $((\phi, \psi) \mapsto \psi \circ \phi)$:

Generically $D_2 \circ D_1 = \alpha^{L(D_1,D_2)} D_2 \# D_1$.

Tensor Product: "defined" on diagrams by horizontally stacking:

Composition: "defined" on diagrams by vertically stacking $((\phi, \psi) \mapsto \psi \circ \phi)$:

Generically $D_2 \circ D_1 = \alpha^{L(D_1,D_2)} D_2 \# D_1$.

Tensor Product: "defined" on diagrams by horizontally stacking:

$$D_2\otimes D_1=igcup_{QQ}\otimes igcup_{QQ}=igcup_{QQ}\otimes igcup_{QQ}$$

Composition: "defined" on diagrams by vertically stacking $((\phi,\psi)\mapsto\psi\circ\phi)$:

Generically $D_2 \circ D_1 = \alpha^{L(D_1,D_2)} D_2 \# D_1$.

<u>Tensor Product:</u> "defined" on diagrams by horizontally stacking:

$$D_2\otimes D_1=igcup_{>>>}\otimesigcup_{>>>}=igcup_{>>>}=igcup_{>>>}$$

$$(n_1 \otimes n_2 = n_1 + n_2).$$

TL-category: a nested (0,1,2) "cobordism category" with

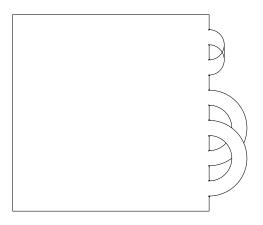
- ► 0-manifolds: points ⊔_{finite}*.
- ► 1-manifolds: interval [0,1].
- \triangleright 2-manifolds: square $[0,1]^2$.

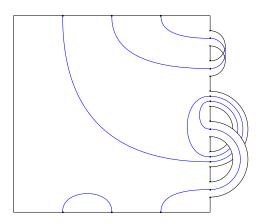
TL-category: a nested (0,1,2) "cobordism category" with

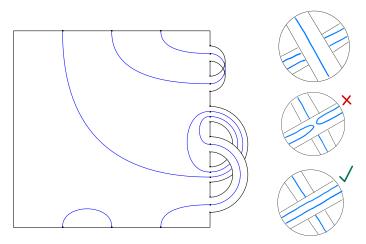
- ▶ 0-manifolds: points $\sqcup_{finite}*$.
- ► 1-manifolds: interval [0, 1].
- ightharpoonup 2-manifolds: square $[0,1]^2$.

We essentially will consider the question of when the "2" can have different surface type (especially **unorientable**) i.e.

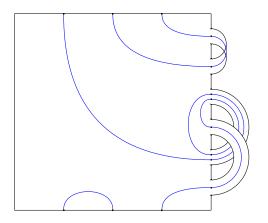
$$[0,1]^2 \longrightarrow \Sigma.$$

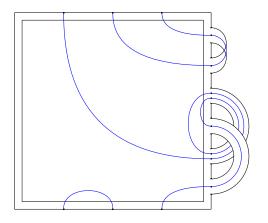

TL-category: a nested (0,1,2) "cobordism category" with


- ► 0-manifolds: points ⊔_{finite}*.
- ► 1-manifolds: interval [0, 1].
- ► 2-manifolds: square $[0,1]^2$.

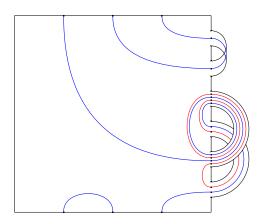

We essentially will consider the question of when the "2" can have different surface type (especially **unorientable**) i.e.

$$[0,1]^2 \longrightarrow \Sigma.$$


we will restrict to surface types Σ with one boundary component.

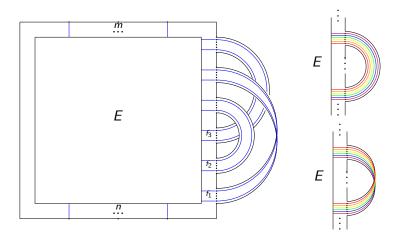


Proceed concretely; attach "handles" to our square frame

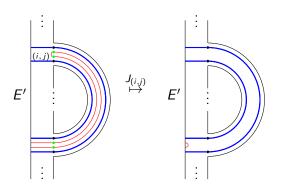


described by a quadruple (P, s, f, E).

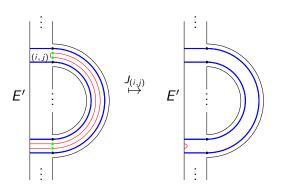
Proceed concretely; attach "handles" to our square frame



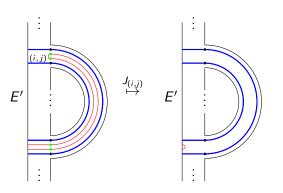
described by a quadruple (P, s, f, E).



SWB diagrams


Square with bands (SWB) diagram encoded by $\Theta = (P, s, f, E)$ (type n, m)

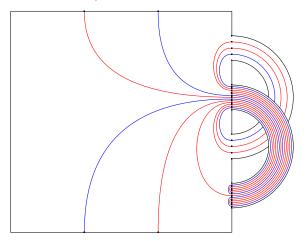
Unlike the TL-case, there is a non-trivial isotopy move on diagrams: We can remove "turnbacks" by "pull-throughs"



Unlike the TL-case, there is a non-trivial isotopy move on diagrams: We can remove "turnbacks" by "pull-throughs"

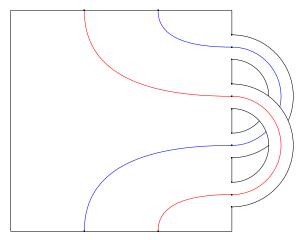
$$(P, s, f, E' \sqcup \{\{(i,j), (i,j+1)\}\}) \mapsto (P, s, f', o(E''))$$

Unlike the TL-case, there is a non-trivial isotopy move on diagrams: We can remove "turnbacks" by "pull-throughs"

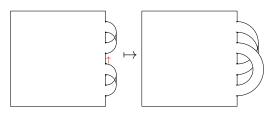

$$(P, s, f, E' \sqcup \{\{(i, j), (i, j + 1)\}\}) \mapsto (P, s, f', o(E''))$$

Generate an equivalence relation with this move.

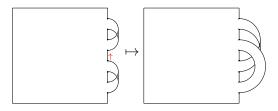
<u>Fact:</u> If Θ has no internal components, then its isotopy class has a **unique** representative w/o turnbacks


SWB diagrams - Isotopy

<u>Fact:</u> If Θ has no internal components, then its isotopy class has a **unique** representative w/o turnbacks

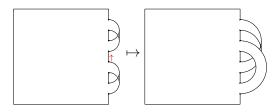

SWB diagrams - Isotopy

<u>Fact:</u> If Θ has no internal components, then its isotopy class has a **unique** representative w/o turnbacks

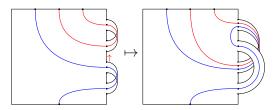


Different realisations of a surface are related by **handleslides**:

Different realisations of a surface are related by handleslides:

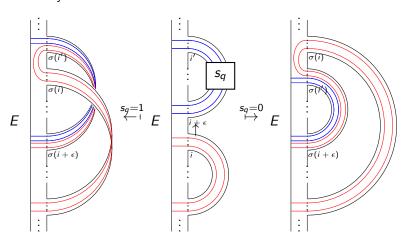


Different realisations of a surface are related by **handleslides**:

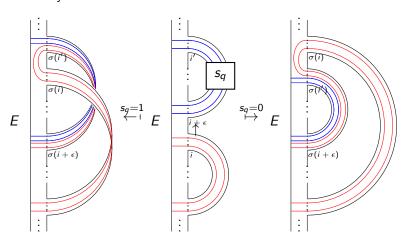


This induces moves on SWB diagrams:

Different realisations of a surface are related by **handleslides**:

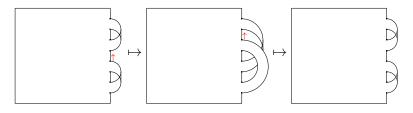


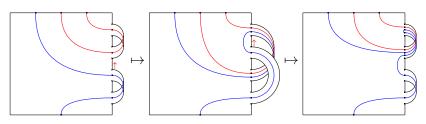
This induces moves on SWB diagrams:



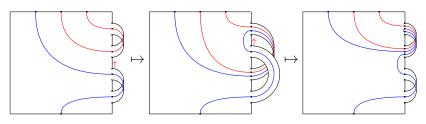
SWB diagrams - Handlesliding Generically: "Two bands involved"

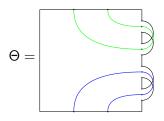
Generically: "Two bands involved"

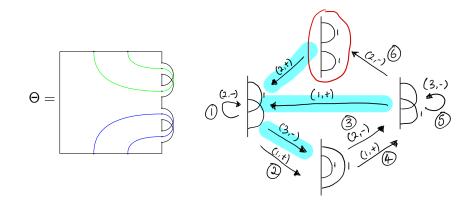

Generically: "Two bands involved"

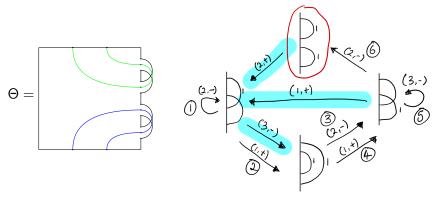

$$(P,s,f,E) \mapsto (\sigma(P),s' \circ \sigma^{-1},f' \circ \sigma^{-1},o(E) \cup \{\text{``new red arcs''}\})$$

On the level of the surface, we can define an equivalence relation by $(P,s)\sim (P',s')$ if (P',s') can be obtained from (P,s) by a finite sequence of handleslides, e.g.

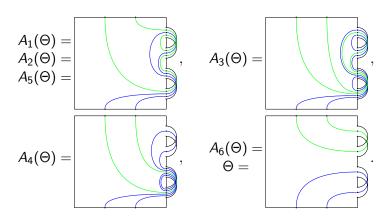

On the level of the surface, we can define an equivalence relation by $(P,s)\sim (P',s')$ if (P',s') can be obtained from (P,s) by a finite sequence of handleslides, e.g.

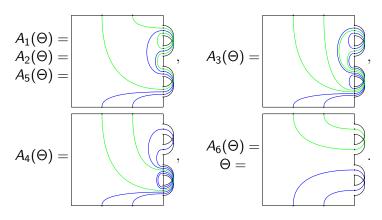

On the level of the surface, we can define an equivalence relation by $(P,s) \sim (P',s')$ if (P',s') can be obtained from (P,s) by a finite sequence of handleslides, e.g.

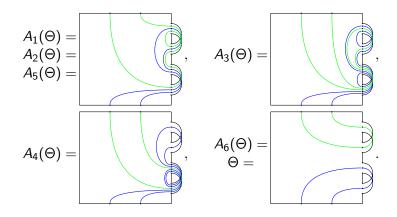

On the level of the surface, we can define an equivalence relation by $(P,s) \sim (P',s')$ if (P',s') can be obtained from (P,s) by a finite sequence of handleslides, e.g.



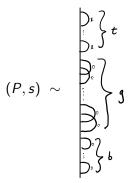
Defines an equivalence relation on **isotopy classes** of SWB diagrams - call this **Handleslide (HS) Equivalence**.


SWB diagrams - Handleslide Equivalence




Associate the "reduced" sequence A_i for each edge outside the tree, e.g.

$$A_2 = (3, +) \circ (4, -) \circ (1, +) \circ (2, +)$$


$$\langle A_2, A_3, A_4 \mid A_3 A_2 = A_4, \ A_2 A_4 = A_4 A_2^{-1} \rangle \simeq \mathbb{Z} \rtimes \mathbb{Z}.$$

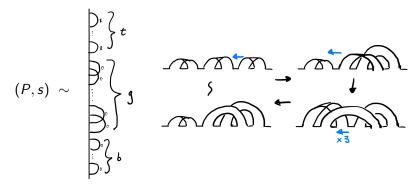
 $\langle A_2, A_3, A_4 \mid A_3A_2 = A_4, \ A_2A_4 = A_4A_2^{-1} \rangle \simeq \mathbb{Z} \rtimes \mathbb{Z}.$ (Chord Diag. Pres. of Mapping Class Group - Bene 2009)

Handleslide Equivalence - Caravan form

FACT: Any surface (P, s) has a unique representative in the following **caravan form**:

where $g, b \in \mathbb{Z}_{\geq 0}$,

Handleslide Equivalence - Caravan form


FACT: Any surface (P, s) has a unique representative in the following **caravan form**:

$$(P,s) \sim \left\{ \begin{array}{c} \begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right\}$$

where $g, b \in \mathbb{Z}_{\geq 0}$, AND $t \in \{0, 1, 2\}$.

Handleslide Equivalence - Caravan form

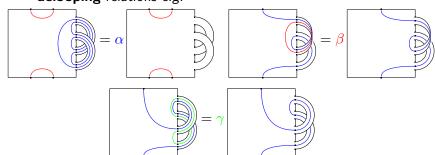
FACT: Any surface (P, s) has a unique representative in the following **caravan form**:

where $g, b \in \mathbb{Z}_{\geq 0}$, AND $t \in \{0, 1, 2\}$.

Fix \mathbb{K} a comm. ring with $\alpha, \beta, \gamma \in \mathbb{K}$.

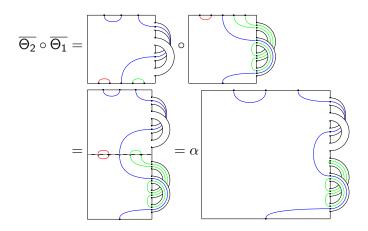
Fix \mathbb{K} a comm. ring with $\alpha, \beta, \gamma \in \mathbb{K}$. Define $\mathcal{SQ} = \mathcal{SQ}(\alpha, \beta, \gamma)$ as the \mathbb{K} -linear category with:

Fix \mathbb{K} a comm. ring with $\alpha, \beta, \gamma \in \mathbb{K}$. Define $\mathcal{SQ} = \mathcal{SQ}(\alpha, \beta, \gamma)$ as the \mathbb{K} -linear category with:

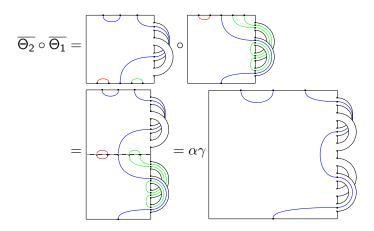

ightharpoonup Objects: non-negative integers $\mathbb N$

Fix \mathbb{K} a comm. ring with $\alpha, \beta, \gamma \in \mathbb{K}$. Define $\mathcal{SQ} = \mathcal{SQ}(\alpha, \beta, \gamma)$ as the \mathbb{K} -linear category with:

- lacktriangle Objects: non-negative integers $\Bbb N$
- ► Morphisms: Hom(n, m) consists of \mathbb{K} -linear combinations of HS classes of type (n, m) SWB diagrams, $[\Theta]_{HS}$,


Fix \mathbb{K} a comm. ring with $\alpha, \beta, \gamma \in \mathbb{K}$. Define $\mathcal{SQ} = \mathcal{SQ}(\alpha, \beta, \gamma)$ as the \mathbb{K} -linear category with:

- lacktriangle Objects: non-negative integers $\mathbb N$
- ► Morphisms: $\operatorname{Hom}(n, m)$ consists of \mathbb{K} -linear combinations of HS classes of type (n, m) SWB diagrams, $[\Theta]_{HS}$, modulo the **delooping** relations *e.g.*



$$\frac{\text{Composition: } \operatorname{Hom}(n,m) \times \operatorname{Hom}(m,l) \to \operatorname{Hom}(n,l) \text{ is given by }}{\overline{\Theta_2} \circ \overline{\Theta_1} = \alpha^{L(\Theta_1,\Theta_2)} \, \overline{\Theta_2 \# \Theta_1}}$$
:

Composition: $\operatorname{Hom}(n,m) \times \operatorname{Hom}(m,l) \to \operatorname{Hom}(n,l)$ is given by $\overline{\Theta_2} \circ \overline{\Theta_1} = \alpha^{L(\Theta_1,\Theta_2)} \overline{\Theta_2 \# \Theta_1}$:

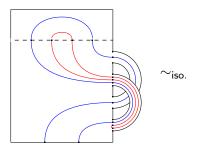
Composition: $\operatorname{Hom}(n,m) \times \operatorname{Hom}(m,l) \to \operatorname{Hom}(n,l)$ is given by $\overline{\Theta_2} \circ \overline{\Theta_1} = \alpha^{L(\Theta_1,\Theta_2)} \overline{\Theta_2 \# \Theta_1}$:

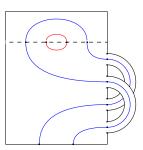
Theorem This defines a \mathbb{K} -linear category

Theorem

This defines a \mathbb{K} -linear category

Proof.


Main obstacle is well-definedness of composition:


Theorem

This defines a K-linear category

Proof.

Main obstacle is well-definedness of composition:

The Category \mathcal{SQ} - Basic Facts

Basic Facts

The Category \mathcal{SQ} - Basic Facts

Fact 0: We have two (wide) subcategories:

- \triangleright $\mathcal{SQ}^+ = \mathcal{SQ}^+(\alpha, \beta)$ with diagrams on orientable surfaces,
- ► $TL = TL(\alpha)$ with diagrams on squares.

Basic Facts

The Category \mathcal{SQ} - Basic Facts

Fact 0: We have two (wide) subcategories:

- \triangleright $\mathcal{SQ}^+ = \mathcal{SQ}^+(\alpha, \beta)$ with diagrams on orientable surfaces,
- ► $TL = TL(\alpha)$ with diagrams on squares.

<u>Fact 1</u>: We have a contravariant endofunctor $(_{-})^* : \mathcal{SQ} \to \mathcal{SQ}$, given by $n^* = n$ and which flips diagrams upside down.

The Category \mathcal{SQ} - Basic Facts

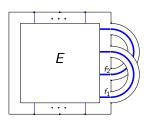
Fact 0: We have two (wide) subcategories:

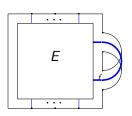
- \triangleright $\mathcal{SQ}^+ = \mathcal{SQ}^+(\alpha, \beta)$ with diagrams on orientable surfaces,
- ► $TL = TL(\alpha)$ with diagrams on squares.

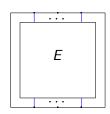
Fact 1: We have a contravariant endofunctor $(_)^* : \mathcal{SQ} \to \mathcal{SQ}$, given by $n^* = n$ and which flips diagrams upside down.

<u>Fact 2</u>: For any $\Theta \in Sq(n, m)$, there exist **unique** integers l_s , l_t and l_u , and $\Theta' \in Sq(n, m)$ without closed loops, such that:

$$\overline{\Theta} = \alpha^{I_s} \beta^{I_t} \gamma^{I_u} \overline{\Theta'} \in \mathsf{Hom}(n, m).$$

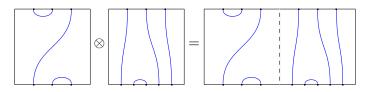

The Category \mathcal{SQ} - Basic Facts

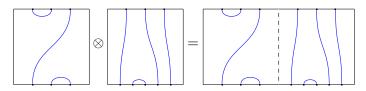

<u>Fact 3</u>: Any morphism $\overline{\Theta} \in \operatorname{Hom}(n,m)$ has a factorisation in terms of diagrams of the following form


-Square with Bands Diagrams

The Category \mathcal{SQ} - Basic Facts

<u>Fact 3</u>: Any morphism $\overline{\Theta} \in \text{Hom}(n, m)$ has a factorisation in terms of diagrams of the following form (AND)




Recall: In TL case we had a tensor product given by "horizontal stacking" of diagrams:

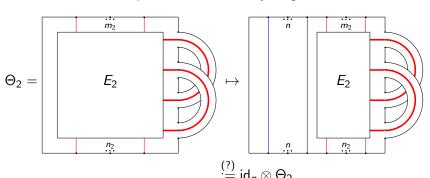
The Category \mathcal{SQ} - Tensor Product

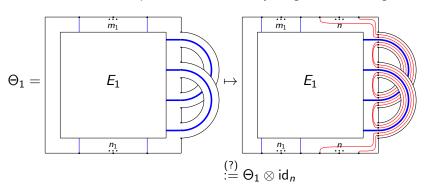
Recall: In TL case we had a tensor product given by "horizontal stacking" of diagrams:



Recall: In TL case we had a tensor product given by "horizontal stacking" of diagrams:

Can we extend this to a tensor product on SQ which has $n_1 \otimes n_2 = n_1 + n_2$ on objects.


Recall: In TL case we had a tensor product given by "horizontal stacking" of diagrams:

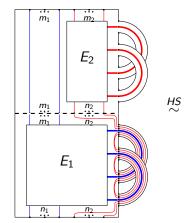

Can we extend this to a tensor product on \mathcal{SQ} which has $n_1 \otimes n_2 = n_1 + n_2$ on objects. What should $\overline{\Theta} \otimes \overline{\Theta'}$ be for SWB diagrams??

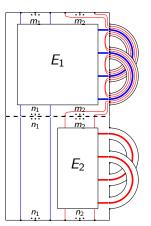
Indirect answer: Step 1 - Put the identity diagram on the left:

Indirect answer: Step 1 - Put the identity diagram on the left:

Indirect answer: Step 2 - Put the identity diagram on the right:

Indirect answer: Step 3 - Insist upon functoriality:


The Category \mathcal{SQ} - Tensor Product


Indirect answer: Step 3 - Insist upon functoriality:

$$\overline{\Theta_1} \otimes \overline{\Theta_2} = \overline{\left(\mathsf{id}_{m_1} \otimes \Theta_2\right)} \circ \overline{\left(\Theta_1 \otimes \mathsf{id}_{n_2}\right)} \stackrel{?}{=} \overline{\left(\Theta_1 \otimes \mathsf{id}_{m_2}\right)} \circ \overline{\left(\mathsf{id}_{n_1} \otimes \Theta_2\right)}$$

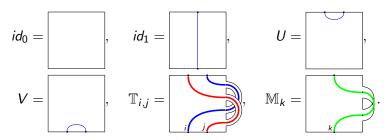
Indirect answer: Step 3 - Insist upon functoriality:

$$\overline{\Theta_1} \otimes \overline{\Theta_2} = \overline{(\mathsf{id}_{m_1} \otimes \Theta_2)} \circ \overline{(\Theta_1 \otimes \mathsf{id}_{n_2})} \stackrel{?}{=} \overline{(\Theta_1 \otimes \mathsf{id}_{m_2})} \circ \overline{(\mathsf{id}_{n_1} \otimes \Theta_2)}$$

Theorem This defines a tensor product on SQ.

Theorem This defines a tensor product on SQ. and

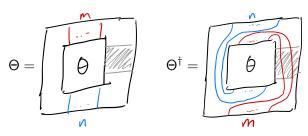
Theorem


This defines a tensor product on SQ.

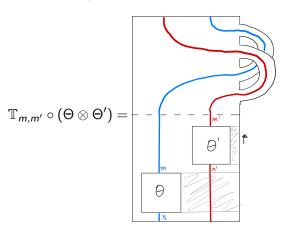
and

Basic Facts

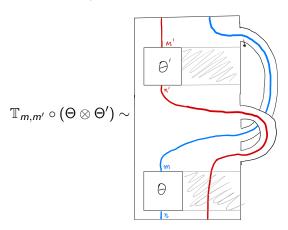
Proposition


The following is a monoidal generating set:

<u>Fact 4</u>: The tensor product restricts to "horizontal stacking" on the TL subcategory.

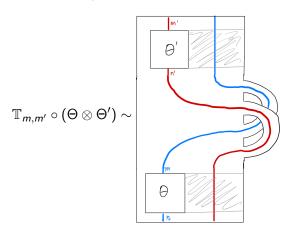

<u>Fact 4</u>: The tensor product restricts to "horizontal stacking" on the TL subcategory.

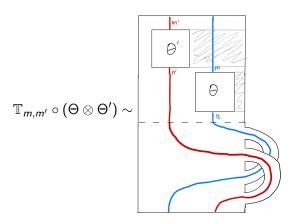
<u>Fact 5</u>: There is a rigid monoidal structure with $n^{\dagger}=n$ and the usual TL eval. $V_n \in Hom(2n,0)$ and coeval. $U_n \in Hom(0,2n)$ diagrams. Write $(_)^{\dagger}: \mathcal{SQ} \to \mathcal{SQ}$ for the associated contravariant functor:



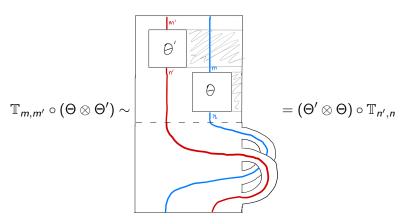
<u>Fact 6</u>: Consider the $\mathbb{T}_{i,j} \in \text{Hom}(i \otimes j, j \otimes i)$:

Fact 6: Consider the $\mathbb{T}_{i,j} \in \mathsf{Hom}(i \otimes j, j \otimes i)$:


Fact 6: Consider the $\mathbb{T}_{i,j} \in \text{Hom}(i \otimes j, j \otimes i)$:


Square with Bands Diagrams

The Category \mathcal{SQ} - Tensor Product - More Facts!


Fact 6: Consider the $\mathbb{T}_{i,j} \in \text{Hom}(i \otimes j, j \otimes i)$:

Fact 6: Consider the $\mathbb{T}_{i,j} \in \mathsf{Hom}(i \otimes j, j \otimes i)$:

Fact 6: Consider the $\mathbb{T}_{i,j} \in \mathsf{Hom}(i \otimes j, j \otimes i)$:

The Category SQ - Tensor Product - More Facts!

Fact 6: Consider the $\mathbb{T}_{i,j} \in \text{Hom}(i \otimes j, j \otimes i)$:

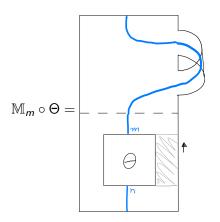
$$\mathbb{T}_{m,m'}\circ(\Theta\otimes\Theta')\sim =(\Theta'\otimes\Theta)\circ\mathbb{T}_{n',n}$$

These define a braiding $\mathbb{T}: \otimes \to \otimes^{\mathsf{op}} !!$

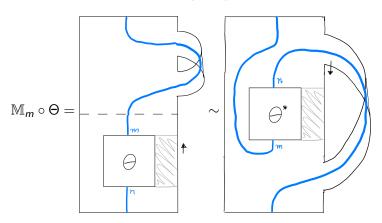
The Category SQ - Tensor Product - More Facts!

<u>Fact 6</u>: Consider the $\mathbb{T}_{i,j} \in \text{Hom}(i \otimes j, j \otimes i)$:

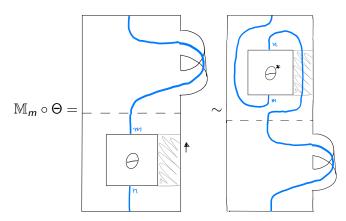
$$\mathbb{T}_{m,m'}\circ(\Theta\otimes\Theta')=(\Theta'\otimes\Theta)\circ\mathbb{T}_{n',n}$$

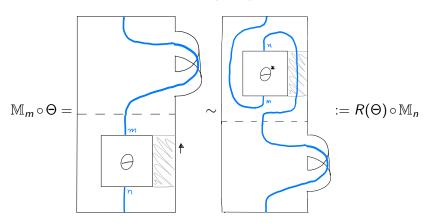

These define a braiding $\mathbb{T}: \otimes \to \otimes^{op} !!$

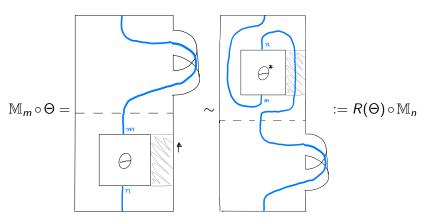
Note: The $\mathbb{T}_{i,j}$ are not invertible, so this doesn't make \mathcal{SQ} braided monoidal. However, they do obey the (categorical) **YBE**:


$$\begin{split} &(\mathbb{T}_{j,k} \otimes \mathsf{id}_i) \circ (\mathsf{id}_j \otimes \mathbb{T}_{i,k}) \circ (\mathbb{T}_{i,j} \otimes \mathsf{id}_k) \\ &= (\mathsf{id}_k \otimes \mathbb{T}_{i,j}) \circ (\mathbb{T}_{i,k} \otimes \mathsf{id}_j) \circ (\mathsf{id}_i \otimes \mathbb{T}_{j,k}) \end{split}$$

The Category \mathcal{SQ} - Tensor Product - More Facts!

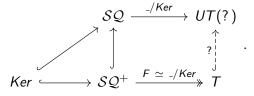

Fact 7: Consider the $\mathbb{M}_n \in \text{Hom}(m, m)$:


Fact 7: Consider the $\mathbb{M}_n \in \text{Hom}(m, m)$:


Fact 7: Consider the $M_n \in \text{Hom}(m, m)$:

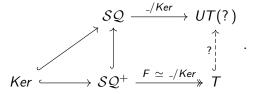
Fact 7: Consider the $M_n \in \text{Hom}(m, m)$:

Fact 7: Consider the $\mathbb{M}_n \in \text{Hom}(m, m)$:



i.e. $\mathbb{M}: \mathsf{id} \Rightarrow R$, where $R: \mathcal{SQ} \to \mathcal{SQ}$ is $R(\Theta) = (\Theta^*)^{\dagger}$.

PROBLEM: Hom-sets are infinite dimensional.


PROBLEM: Hom-sets are infinite dimensional.

Scheme for "finitising": Find a target category T with a "finitising functor" $F: \mathcal{SQ}^+ \to T$ (full, ess. surj., monoidal).

PROBLEM: Hom-sets are infinite dimensional.

Scheme for "finitising": Find a target category T with a "finitising functor" $F: \mathcal{SQ}^+ \to T$ (full, ess. surj., monoidal).

Try to lift, creating an "unorientable extension" of T, UT with $UF: \mathcal{SQ} \to UT$

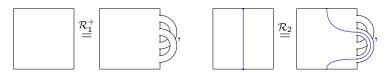
PROBLEM: Hom-sets are infinite dimensional.

PROBLEM: Hom-sets are infinite dimensional.

If you're like me, it bothers you that $\mathcal{S}\mathcal{Q}$ is not braided...

PROBLEM: Hom-sets are infinite dimensional.

If you're like me, it bothers you that $\mathcal{S}\mathcal{Q}$ is not braided...

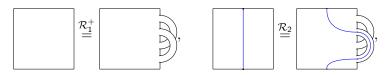

IDEA: lets force it to be!

PROBLEM: Hom-sets are infinite dimensional.

If you're like me, it bothers you that \mathcal{SQ} is not braided...

IDEA: lets force it to be!

The smallest such quotient of SQ is obtained by imposing relations \mathcal{R}_1^+ and \mathcal{R}_2 :

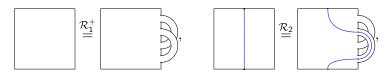


PROBLEM: Hom-sets are infinite dimensional.

If you're like me, it bothers you that \mathcal{SQ} is not braided...

IDEA: lets force it to be!

The smallest such quotient of SQ is obtained by imposing relations \mathcal{R}_1^+ and \mathcal{R}_2 :

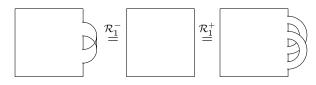

This is stabilisation! *only need \mathcal{R}_1^+ if α non-invertible.

PROBLEM: Hom-sets are infinite dimensional.

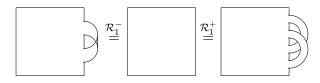
If you're like me, it bothers you that $\mathcal{S}\mathcal{Q}$ is not braided...

IDEA: lets force it to be!

The smallest such quotient of SQ is obtained by imposing relations \mathcal{R}_1^+ and \mathcal{R}_2 :


This is stabilisation! *only need \mathcal{R}_1^+ if α non-invertible.

Proposition


$$\mathcal{SQ}^+(\alpha,\alpha)/(\mathcal{R}_2\&\mathcal{R}_1^+) = VTL(\alpha) \ (\mathcal{R}_2 \ \text{forces} \ \alpha = \gamma).$$

Another very natural demand is that $\text{Hom}(0,0)\simeq \mathbb{K}.$

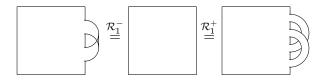
Another very natural demand is that $\text{Hom}(0,0)\simeq \mathbb{K}.$ This requires imposing the relation \mathcal{R}_1 :

Another very natural demand is that $\text{Hom}(0,0)\simeq \mathbb{K}.$ This requires imposing the relation \mathcal{R}_1 :

Conjecture

 $\mathcal{SQ}/\mathcal{R}_1$ has finite dimensional hom-spaces.

Another very natural demand is that $\text{Hom}(0,0)\simeq \mathbb{K}.$ This requires imposing the relation \mathcal{R}_1 :



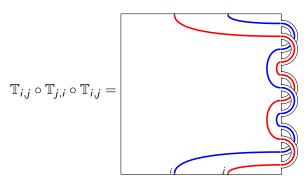
Conjecture

 SQ/R_1 has finite dimensional hom-spaces.

$$\blacktriangleright \ \operatorname{\mathsf{Hom}}(1,1) = \mathbb{K}\left\{ \boxed{}, \boxed{}, \boxed{} \right\} \simeq \mathbb{K}\langle a \mid a^3 = a \rangle$$

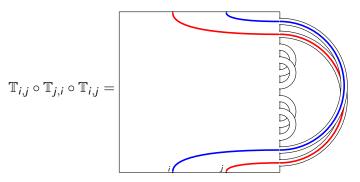
Another very natural demand is that $\text{Hom}(0,0)\simeq \mathbb{K}.$ This requires imposing the relation \mathcal{R}_1 :

Conjecture

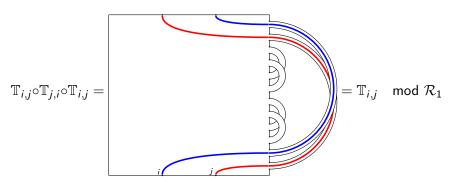

 $\mathcal{SQ}/\mathcal{R}_1$ has finite dimensional hom-spaces.

$$\blacktriangleright \ \operatorname{\mathsf{Hom}}(1,1) = \mathbb{K} \left\{ \boxed{}, \boxed{}, \boxed{} \right\} \simeq \mathbb{K} \langle a \mid a^3 = a \rangle$$

▶ $\dim(\text{Hom}(2,2)) \ge 23$.


Example in $\mathcal{SQ}/\mathcal{R}_1$

Sample calculation in $\mathcal{SQ}/\mathcal{R}_1$:


Example in $\mathcal{SQ}/\mathcal{R}_1$

Sample calculation in SQ/R_1 :

Example in $\mathcal{SQ}/\mathcal{R}_1$

Sample calculation in SQ/R_1 :

► Can we prove this conjecture? (Combinatorially?)

- ► Can we prove this conjecture? (Combinatorially?)
- ► Can we give a more universal description?

- ► Can we prove this conjecture? (Combinatorially?)
- ► Can we give a more universal description?
- lacktriangle Can we find presentations for \mathcal{SQ} and its quotients?

- ► Can we prove this conjecture? (Combinatorially?)
- ► Can we give a more universal description?
- ightharpoonup Can we find presentations for SQ and its quotients?

$$(\mathsf{id}_j \otimes \mathbb{M}_i) \circ (\mathbb{M}_j \otimes \mathsf{id}_i) \circ \mathbb{M}_{i+j} = \mathbb{T}_{i,j} \circ (\mathsf{id}_{i+j} \otimes \mathbb{M}_0)$$

- ► Can we prove this conjecture? (Combinatorially?)
- ► Can we give a more universal description?
- ► Can we find presentations for SQ and its quotients?

$$(\mathsf{id}_j \otimes \mathbb{M}_i) \circ (\mathbb{M}_j \otimes \mathsf{id}_i) \circ \mathbb{M}_{i+j} = \mathbb{T}_{i,j} \circ (\mathsf{id}_{i+j} \otimes \mathbb{M}_0)$$

▶ What does the (monoidal) representation theory look like?

- Can we prove this conjecture? (Combinatorially?)
- ► Can we give a more universal description?
- ► Can we find presentations for SQ and its quotients?

$$(\mathsf{id}_j \otimes \mathbb{M}_i) \circ (\mathbb{M}_j \otimes \mathsf{id}_i) \circ \mathbb{M}_{i+j} = \mathbb{T}_{i,j} \circ (\mathsf{id}_{i+j} \otimes \mathbb{M}_0)$$

- ► What does the (monoidal) representation theory look like?
- ► What about non-functorial quotients? e.g. terminate at a finite genus

Thank You!

Questions?