

A Diagram Category for Non-Orientable Surfaces

Benjamin Morris¹
Joint work with Dionne Ibarra², Gabriel Montoya-Vega³, and Paul Martin¹ (supervisor)

¹University of Leeds ²Monash University, Melbourne ³CUNY Graduate Center, NYC

ITMAIA 2025

Motivation

Construct interesting low-dim "cobordism categories" amenable to rep. th. study:

- ► Linear
- ▶ Combinatorial
- ► Finite Dimensional Hom-spaces
- ► More structure? (monoidal... etc)

In particular, we consider **nested** (0,1,2) - "cobordism categories".

Fix \mathbb{K} . For $\alpha \in \mathbb{K}$, $\mathit{TL}(\alpha)$ is a (0,1,2) - "cobordism category" where:

Fix \mathbb{K} . For $\alpha \in \mathbb{K}$, $\mathit{TL}(\alpha)$ is a (0,1,2) - "cobordism category" where:

▶ **Objects:** (0,1) part

Fix \mathbb{K} . For $\alpha \in \mathbb{K}$, $\mathit{TL}(\alpha)$ is a (0,1,2) - "cobordism category" where:

▶ **Objects:** (0,1) part - points in [0,1] (skeletally \mathbb{N})

Fix \mathbb{K} . For $\alpha \in \mathbb{K}$, $\mathit{TL}(\alpha)$ is a (0,1,2) - "cobordism category" where:

- ▶ **Objects:** (0,1) part points in [0,1] (skeletally \mathbb{N})
- ightharpoonup Morphisms: (1,2) part

Fix \mathbb{K} . For $\alpha \in \mathbb{K}$, $\mathit{TL}(\alpha)$ is a (0,1,2) - "cobordism category" where:

- ▶ **Objects:** (0,1) part points in [0,1] (skeletally \mathbb{N})
- ▶ Morphisms: (1,2) part Hom(n,m) is \mathbb{K} -linear combinations of type n,m "TL-diagrams", (embedded intervals in $[0,1]^2$):

up to homeomorphisms of $[0,1]^2$ (ambient isotopy).

Fix \mathbb{K} . For $\alpha \in \mathbb{K}$, $\mathit{TL}(\alpha)$ is a (0,1,2) - "cobordism category" where:

- ▶ **Objects:** (0,1) part points in [0,1] (skeletally \mathbb{N})
- ▶ Morphisms: (1,2) part Hom(n,m) is \mathbb{K} -linear combinations of type n,m "TL-diagrams", (embedded intervals in $[0,1]^2$):

up to homeomorphisms of $[0,1]^2$ (ambient isotopy). { classes of diagrams } \leftrightarrow { xless pair ptns of V(n,m) }

Composition: "defined" on diagrams by vertically stacking $\overline{((\phi,\psi)\mapsto\psi\circ\phi)}$:

Composition: "defined" on diagrams by vertically stacking $((\phi, \psi) \mapsto \psi \circ \phi)$:

Composition: "defined" on diagrams by vertically stacking $((\phi, \psi) \mapsto \psi \circ \phi)$:

Generically $D_2 \circ D_1 = \alpha^{L(D_1,D_2)} D_2 \# D_1$.

Composition: "defined" on diagrams by vertically stacking $((\phi, \psi) \mapsto \psi \circ \phi)$:

Generically $D_2 \circ D_1 = \alpha^{L(D_1,D_2)} D_2 \# D_1$.

Tensor Product: "defined" on diagrams by horizontally stacking:

Composition: "defined" on diagrams by vertically stacking $((\phi, \psi) \mapsto \psi \circ \phi)$:

Generically $D_2 \circ D_1 = \alpha^{L(D_1,D_2)} D_2 \# D_1$.

<u>Tensor Product:</u> "defined" on diagrams by horizontally stacking:

$$D_2\otimes D_1= igcomu \otimes igcomu = igcomu \otimes igc$$

Composition: "defined" on diagrams by vertically stacking $((\phi, \psi) \mapsto \psi \circ \phi)$:

Generically $D_2 \circ D_1 = \alpha^{L(D_1,D_2)} D_2 \# D_1$.

<u>Tensor Product:</u> "defined" on diagrams by horizontally stacking:

$$(n_1\otimes n_2=n_1+n_2).$$

TL-category: a nested (0,1,2) "cobordism category" with

- ► 0-manifolds: points ⊔_{finite}*.
- ► 1-manifolds: interval [0,1].
- ightharpoonup 2-manifolds: square $[0,1]^2$.

TL-category: a nested (0,1,2) "cobordism category" with

- ► 0-manifolds: points ⊔_{finite}*.
- ► 1-manifolds: interval [0, 1].
- \triangleright 2-manifolds: square $[0,1]^2$.

We essentially will consider the question of when the "2" can have different surface type (especially **unorientable**) i.e.

$$[0,1]^2 \longrightarrow \Sigma.$$

TL-category: a nested (0,1,2) "cobordism category" with

- ▶ 0-manifolds: points \(\preceq\) finite*.
- ► 1-manifolds: interval [0, 1].
- ightharpoonup 2-manifolds: square $[0,1]^2$.

We essentially will consider the question of when the "2" can have different surface type (especially **unorientable**) i.e.

$$[0,1]^2 \longrightarrow \Sigma.$$

we will restrict to surface types Σ with one boundary component.

Proceed concretely; attach "handles" to our square frame

described by a quadruple (P, s, f, E).

Proceed concretely; attach "handles" to our square frame

described by a quadruple (P, s, f, E).

SWB diagrams

Square with bands (SWB) diagram encoded by $\Theta = (P, s, f, E)$ (type n, m)

Unlike the TL-case, there is a non-trivial isotopy move on diagrams: We can remove "turnbacks" by "pull-throughs"

Unlike the TL-case, there is a non-trivial isotopy move on diagrams: We can remove "turnbacks" by "pull-throughs"

$$(P, s, f, E' \sqcup \{\{(i, j), (i, j + 1)\}\}) \mapsto (P, s, f', o(E''))$$

Unlike the TL-case, there is a non-trivial isotopy move on diagrams: We can remove "turnbacks" by "pull-throughs"

$$(P, s, f, E' \sqcup \{\{(i, j), (i, j + 1)\}\}) \mapsto (P, s, f', o(E''))$$

Generate an equivalence relation with this move.

<u>Fact:</u> If Θ has no internal components, then its isotopy class has a **unique** representative w/o turnbacks

<u>Fact:</u> If Θ has no internal components, then its isotopy class has a **unique** representative w/o turnbacks

<u>Fact:</u> If Θ has no internal components, then its isotopy class has a **unique** representative w/o turnbacks

SWB diagrams - Handlesliding

Different realisations of a surface are related by **handleslides**:

Different realisations of a surface are related by **handleslides**:

Different realisations of a surface are related by **handleslides**:

This induces moves on SWB diagrams:

Different realisations of a surface are related by **handleslides**:

This induces moves on SWB diagrams:

SWB diagrams - Handlesliding Generically: "Two bands involved"

SWB diagrams - Handlesliding

Generically: "Two bands involved"

Generically: "Two bands involved"

$$(P,s,f,E) \mapsto (\sigma(P),s' \circ \sigma^{-1},f' \circ \sigma^{-1},o(E) \cup \{\text{ ``new red arcs''}\})$$

On the level of the surface, we can define an equivalence relation by $(P,s)\sim (P',s')$ if (P',s') can be obtained from (P,s) by a finite sequence of handleslides, e.g.

On the level of the surface, we can define an equivalence relation by $(P,s) \sim (P',s')$ if (P',s') can be obtained from (P,s) by a finite sequence of handleslides, e.g.

On the level of the surface, we can define an equivalence relation by $(P,s) \sim (P',s')$ if (P',s') can be obtained from (P,s) by a finite sequence of handleslides, e.g.

On the level of the surface, we can define an equivalence relation by $(P,s) \sim (P',s')$ if (P',s') can be obtained from (P,s) by a finite sequence of handleslides, e.g.

Defines an equivalence relation on **isotopy classes** of SWB diagrams - call this **Handleslide (HS) Equivalence**.

Associate the "reduced" sequence A_i for each edge outside the tree, e.g.

$$A_2 = (3, +) \circ (4, -) \circ (1, +) \circ (2, +)$$

$$\langle A_2, A_3, A_4 \mid A_3 A_2 = A_4, \ A_2 A_4 = A_4 A_2^{-1} \rangle \simeq \mathbb{Z} \rtimes \mathbb{Z}.$$

 $\langle A_2, A_3, A_4 \mid A_3A_2 = A_4, \ A_2A_4 = A_4A_2^{-1} \rangle \simeq \mathbb{Z} \rtimes \mathbb{Z}.$ (Chord Diag. Pres. of Mapping Class Group - Bene 2009)

Handleslide Equivalence - Caravan form

FACT: Any surface (P, s) has a unique representative in the following **caravan form**:

where $g,b\in\mathbb{Z}_{\geq 0}$,

Handleslide Equivalence - Caravan form

FACT: Any surface (P, s) has a unique representative in the following **caravan form**:

$$(P,s) \sim \left\{ \begin{array}{c} \begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right\}$$

where $g, b \in \mathbb{Z}_{\geq 0}$, AND $t \in \{0, 1, 2\}$.

Handleslide Equivalence - Caravan form

FACT: Any surface (P, s) has a unique representative in the following **caravan form**:

where $g, b \in \mathbb{Z}_{\geq 0}$, AND $t \in \{0, 1, 2\}$.

Fix $\mathbb K$ a comm. ring with $\alpha,\beta,\gamma\in\mathbb K$.

Fix \mathbb{K} a comm. ring with $\alpha, \beta, \gamma \in \mathbb{K}$. The (pre)-category $\mathcal{SQ}(\alpha, \beta, \gamma)$ is defined as the \mathbb{K} -linear category with:

Fix \mathbb{K} a comm. ring with $\alpha, \beta, \gamma \in \mathbb{K}$. The (pre)-category $\mathcal{SQ}(\alpha, \beta, \gamma)$ is defined as the \mathbb{K} -linear category with:

ightharpoonup Objects: non-negative integers $\mathbb N$

Fix \mathbb{K} a comm. ring with $\alpha, \beta, \gamma \in \mathbb{K}$. The (pre)-category $\mathcal{SQ}(\alpha, \beta, \gamma)$ is defined as the \mathbb{K} -linear category with:

- ightharpoonup Objects: non-negative integers $\mathbb N$
- ► Morphisms: Hom(n, m) consists of \mathbb{K} -linear combinations of HS classes of type (n, m) SWB diagrams, $[\Theta]_{HS}$,

Fix \mathbb{K} a comm. ring with $\alpha, \beta, \gamma \in \mathbb{K}$. The (pre)-category $\mathcal{SQ}(\alpha, \beta, \gamma)$ is defined as the \mathbb{K} -linear category with:

- ightharpoonup Objects: non-negative integers $\mathbb N$
- ► Morphisms: $\operatorname{Hom}(n, m)$ consists of \mathbb{K} -linear combinations of HS classes of type (n, m) SWB diagrams, $[\Theta]_{HS}$, modulo the **delooping** relations *e.g.*

Composition:
$$\operatorname{Hom}(n,m) \times \operatorname{Hom}(m,l) \to \operatorname{Hom}(n,l)$$
 is given by $\overline{\Theta_2} \circ \overline{\Theta_1} = \alpha^{L(\Theta_1,\Theta_2)} \overline{\Theta_2 \# \Theta_1}$:

Composition: $\operatorname{Hom}(n,m) \times \operatorname{Hom}(m,l) \to \operatorname{Hom}(n,l)$ is given by $\overline{\Theta_2} \circ \overline{\Theta_1} = \alpha^{L(\Theta_1,\Theta_2)} \overline{\Theta_2 \# \Theta_1}$:

Composition: $\operatorname{Hom}(n,m) \times \operatorname{Hom}(m,l) \to \operatorname{Hom}(n,l)$ is given by $\overline{\Theta_2} \circ \overline{\Theta_1} = \alpha^{L(\Theta_1,\Theta_2)} \overline{\Theta_2 \# \Theta_1}$:

Is composition well defined?

Is composition well defined? Yes - a subtlety

Is composition well defined? Yes - a subtlety

<u>Fact 1</u>: For any $\Theta \in Sq(n,m)$, there exist **unique** integers l_s , l_t and l_u such that:

$$\overline{\Theta} = \alpha^{I_s} \beta^{I_t} \gamma^{I_u} \overline{\Theta'} \in \mathsf{Hom}(n, m),$$

where $\Theta' \in Sq(n, m)$ has no internal components.

<u>Fact 1</u>: For any $\Theta \in Sq(n, m)$, there exist **unique** integers l_s , l_t and l_u such that:

$$\overline{\Theta} = \alpha^{I_s} \beta^{I_t} \gamma^{I_u} \overline{\Theta'} \in \mathsf{Hom}(n, m),$$

where $\Theta' \in Sq(n, m)$ has no internal components.

<u>Fact 2</u>: Any morphism $\overline{\Theta} \in \operatorname{Hom}(n,m)$ has a factorisation in terms of diagrams of the following form

<u>Fact 1</u>: For any $\Theta \in Sq(n, m)$, there exist **unique** integers I_s , I_t and I_u such that:

$$\overline{\Theta} = \alpha^{I_s} \beta^{I_t} \gamma^{I_u} \overline{\Theta'} \in \mathsf{Hom}(n, m),$$

where $\Theta' \in Sq(n,m)$ has no internal components.

<u>Fact 2</u>: Any morphism $\overline{\Theta} \in \text{Hom}(n, m)$ has a factorisation in terms of diagrams of the following form (AND)

LTensor Product

The Category \mathcal{SQ} - Tensor Product

Recall: In TL case we had a tensor product given by "horizontal stacking" of diagrams:

The Category \mathcal{SQ} - Tensor Product

Recall: In TL case we had a tensor product given by "horizontal stacking" of diagrams:

Recall: In TL case we had a tensor product given by "horizontal stacking" of diagrams:

Can we extend this to a tensor product on SQ which has $n_1 \otimes n_2 = n_1 + n_2$ on objects.

Recall: In TL case we had a tensor product given by "horizontal stacking" of diagrams:

Can we extend this to a tensor product on \mathcal{SQ} which has $n_1 \otimes n_2 = n_1 + n_2$ on objects. What should $\overline{\Theta} \otimes \overline{\Theta'}$ be for SWB diagrams??

L Tensor Product

The Category \mathcal{SQ} - Tensor Product

Indirect answer: Step 1 - Put the identity diagram on the left:

The Category SQ - Tensor Product

Indirect answer: Step 1 - Put the identity diagram on the left:

Indirect answer: Step 2 - Put the identity diagram on the right:

Indirect answer: Step 3 - Insist upon functoriality:

Indirect answer: Step 3 - Insist upon functoriality:

$$\overline{\Theta_1} \otimes \overline{\Theta_2} = \overline{\left(\mathsf{id}_{m_1} \otimes \Theta_2\right)} \circ \overline{\left(\Theta_1 \otimes \mathsf{id}_{n_2}\right)} \stackrel{?}{=} \overline{\left(\Theta_1 \otimes \mathsf{id}_{m_2}\right)} \circ \overline{\left(\mathsf{id}_{n_1} \otimes \Theta_2\right)}$$

Indirect answer: Step 3 - Insist upon functoriality:

$$\overline{\Theta_1} \otimes \overline{\Theta_2} = \overline{\left(\mathsf{id}_{m_1} \otimes \Theta_2\right)} \circ \overline{\left(\Theta_1 \otimes \mathsf{id}_{n_2}\right)} \stackrel{?}{=} \overline{\left(\Theta_1 \otimes \mathsf{id}_{m_2}\right)} \circ \overline{\left(\mathsf{id}_{n_1} \otimes \Theta_2\right)}$$

Monoidal Generating Set?

Conjecture: The following is a monoidal generating set for $\overline{\mathcal{SQ}(\alpha,\beta,\gamma)}$:

PROBLEM: Hom-sets are infinite dimensional.

PROBLEM: Hom-sets are infinite dimensional.

A potential "scheme" for finitising:

PROBLEM: Hom-sets are infinite dimensional.

A potential "scheme" for finitising:

F a full and essentially surjective, monoidal functor, and T a target monoidal \mathbb{K} -linear category with f.d. hom spaces. Call F a **finitising functor**.

One very natural demand is that $\text{Hom}(0,0)\simeq \mathbb{K}.$

One very natural demand is that $\text{Hom}(0,0)\simeq \mathbb{K}.$ This requires imposing the relation \mathcal{R}_1 :

One very natural demand is that $\mathsf{Hom}(0,0)\simeq \mathbb{K}$. This requires imposing the relation \mathcal{R}_1 :

Conjecture: SQ/R_1 is a \mathbb{K} -linear category with finite dimensional hom-spaces:

One very natural demand is that $\mathsf{Hom}(0,0)\simeq \mathbb{K}.$ This requires imposing the relation \mathcal{R}_1 :

Conjecture: SQ/R_1 is a \mathbb{K} -linear category with finite dimensional hom-spaces:

$$lackbox{lack} \operatorname{\mathsf{Hom}}(1,1)=\mathbb{K}\left\{ \overline{}, \overline{}, \overline{} \right\}\simeq \mathbb{K}\langle a\mid a^3=a
angle,$$

One very natural demand is that $\mathsf{Hom}(0,0)\simeq \mathbb{K}.$ This requires imposing the relation \mathcal{R}_1 :

Conjecture: SQ/R_1 is a \mathbb{K} -linear category with finite dimensional hom-spaces:

$$lackbox{lack} \operatorname{\mathsf{Hom}}(1,1) = \mathbb{K}\left\{ \boxed{}, \boxed{}, \boxed{} \right\} \simeq \mathbb{K}\langle a \mid a^3 = a \rangle,$$

▶ $dim(Hom(2,2)) \ge 23 *$

Example in $\mathcal{SQ}/\mathcal{R}_1$

Sample calculation in SQ/R_1 :

$$\mathbb{T}_{i,j}\circ\mathbb{T}_{j,i}\circ\mathbb{T}_{i,j}=$$

Example in $\mathcal{SQ}/\mathcal{R}_1$

Sample calculation in SQ/R_1 :

Example in $\mathcal{SQ}/\mathcal{R}_1$

Sample calculation in SQ/R_1 :

Any other candidates for quotients?

Any other candidates for quotients? Note that the $\mathbb{T}_{i,j}$ are components of a braiding $\mathbb{T}: \otimes \to \otimes^{op}$:

Can check the $\mathbb{T}_{i,j}$ satisfy the categorical YBE:

$$\begin{split} & (\mathbb{T}_{j,k} \otimes \mathsf{id}_i) \circ (\mathsf{id}_j \otimes \mathbb{T}_{i,k}) \circ (\mathbb{T}_{i,j} \otimes \mathsf{id}_k) \\ & = (\mathsf{id}_k \otimes \mathbb{T}_{i,j}) \circ (\mathbb{T}_{i,k} \otimes \mathsf{id}_j) \circ (\mathsf{id}_i \otimes \mathbb{T}_{j,k}) \end{split}$$

Any other candidates for quotients? Note that the $\mathbb{T}_{i,j}$ are components of a braiding $\mathbb{T}: \otimes \to \otimes^{op}$:

Can check the $\mathbb{T}_{i,j}$ satisfy the categorical YBE:

$$\begin{split} & (\mathbb{T}_{j,k} \otimes \mathsf{id}_i) \circ (\mathsf{id}_j \otimes \mathbb{T}_{i,k}) \circ (\mathbb{T}_{i,j} \otimes \mathsf{id}_k) \\ & = (\mathsf{id}_k \otimes \mathbb{T}_{i,j}) \circ (\mathbb{T}_{i,k} \otimes \mathsf{id}_j) \circ (\mathsf{id}_i \otimes \mathbb{T}_{j,k}) \end{split}$$

However, SQ is NOT a braided mon.cat.

Any other candidates for quotients? Note that the $\mathbb{T}_{i,j}$ are components of a braiding $\mathbb{T}: \otimes \to \otimes^{op}$:

Can check the $\mathbb{T}_{i,j}$ satisfy the categorical YBE:

$$\begin{split} & (\mathbb{T}_{j,k} \otimes \mathsf{id}_i) \circ (\mathsf{id}_j \otimes \mathbb{T}_{i,k}) \circ (\mathbb{T}_{i,j} \otimes \mathsf{id}_k) \\ & = (\mathsf{id}_k \otimes \mathbb{T}_{i,j}) \circ (\mathbb{T}_{i,k} \otimes \mathsf{id}_j) \circ (\mathsf{id}_i \otimes \mathbb{T}_{j,k}) \end{split}$$

However, SQ is NOT a braided mon.cat. The smallest such quotient is obtained by imposing the relation \mathcal{R}_2 (as well as \mathcal{R}_1^+ *):

NOTE: This implies $\alpha = \gamma$. * not necessary if α invertible.

where $F^2 = id$, $F \circ (\Theta \otimes \Theta') = F(\Theta') \otimes F(\Theta)$.

Consider the functor
$$St:= _/(\mathcal{R}_1^+ + \mathcal{R}_2) := _/\mathcal{R}^+$$
:

Consider the functor $St := -/(\mathcal{R}_1^+ + \mathcal{R}_2) := -/\mathcal{R}^+$:

Consider the functor $St := \frac{1}{2}(\mathcal{R}_1^+ + \mathcal{R}_2) := \frac{1}{2}/\mathcal{R}^+$:

$$\mathcal{SQ}(\alpha, \beta, \alpha) \xrightarrow{-/\mathcal{R}^{+}} \mathcal{SQ}/\mathcal{R}^{+}$$

$$\uparrow \qquad \qquad \qquad \downarrow \qquad$$

$$(\mathcal{SQ}/\mathcal{R}^+)/\mathcal{R}_1^- := \mathcal{SQ}/\mathcal{R} \simeq^* dBr(\alpha, \beta).$$

Consider the functor $St := \frac{1}{2} / (\mathcal{R}_1^+ + \mathcal{R}_2) := \frac{1}{2} / \mathcal{R}^+$:

$$\mathcal{SQ}(\alpha,\beta,\alpha) \xrightarrow{-/\mathcal{R}^{+}} \mathcal{SQ}/\mathcal{R}^{+}$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathcal{R}^{+} \longrightarrow \mathcal{SQ}^{+}(\alpha,\beta,\alpha) \xrightarrow{St \simeq -/\mathcal{R}^{+}} \mathcal{SQ}^{+}/\mathcal{R}^{+} \xrightarrow{\simeq VTL(\alpha)}_{\simeq Br(\alpha)}$$

$$(\mathcal{SQ}/\mathcal{R}^+)/\mathcal{R}_1^- := \mathcal{SQ}/\mathcal{R} \simeq^* dBr(\alpha, \beta).$$

Corollary: Suppose $F: SQ^+(\alpha, \beta, \gamma) \twoheadrightarrow T$ is a f.f. with $F \circ \mathbb{T}$ a braiding in a BMC. Then $\alpha = \gamma$, and F factors through $SQ^+(\alpha, \beta, \alpha)/\mathcal{R}^+ \simeq VTL(\alpha) \simeq Br(\alpha)$.

Non-orientable extension of TL?

 $TL(\alpha)$ is a BMC. Assume a f.f. $F: \mathcal{SQ}(\alpha, \beta, \alpha) \to TL(\alpha)$ sends $\mathbb T$ to the braiding in TL.

Non-orientable extension of TL?

 $TL(\alpha)$ is a BMC. Assume a f.f. $F: \mathcal{SQ}(\alpha, \beta, \alpha) \to TL(\alpha)$ sends $\mathbb T$ to the braiding in TL.

Since this necessarily factors through $VTL(\alpha)$ we are essentially asking to resolve virtual crossings:

Non-orientable extension of TL?

 $TL(\alpha)$ is a BMC. Assume a f.f. $F: \mathcal{SQ}(\alpha, \beta, \alpha) \to TL(\alpha)$ sends $\mathbb T$ to the braiding in TL.

Since this necessarily factors through $VTL(\alpha)$ we are essentially asking to resolve virtual crossings:

If $2 \neq 0 \in \mathbb{K}$, this quotient on $\mathit{UVTL}(-2,\beta)$ is more severe than hoped...

Thank You!

Questions?