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Yang-Baxter Equation
The (parameter dependent) YBE on End(V; ® V> ® V3) is

Ry, v.(u1, u2) Ry, vy (ur, u3)Ry, vy (U2, u3)
= Rv, vy (2, u3) Ry, vy (1, u) Ry, v, (U1, to),
(Rv;,v;(ui, uj) invertible).
Additive dependence = Ry, v, (uj, u;) = Ry, v;(u;i — uj)
Rv, v (u=v)Rv, vs(1)Rv, v (v) = Ry, vy (V)R vs (W) Ry, v, (1= V).
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RLL-Method
Our Goal: construct an R-matrix R(u) € End(V ® V),

ng(u) =1
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RLL-Method
Our Goal: construct an R-matrix R(u) € End(V ® V),

Riz(u) =1 1. We will follow the “RLL-scheme”:

2
1 1
/ /
1 v u 1 v u
u—v = u—v — u-—-v = u—v
2 2
u\ v ”\ v
3 2 3 2
4
1 1
™ >
= u—v — = u—v
A A
3 2 3 2
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This requires two matrices:

> Rip(u) = lﬁ*» € End(C" ® C") (an n? x n? matrix).
2

> Li(u) = jL € End(C") ® A, where A C End(V). An

n X n matrix with values in A.
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Fundamental R-Matrix and Universal L-operators

Riz2(u — v)Li(u)La(v)
= LQ(V)Ll(U)Rlz(U — V).

Li(v) = L(uv) ®idy, La(v) =idp, ® L(v).
(Li(u)L2(v))ijk = Lii(u)Ljk(v).

= RLL relation reduces to quadratic algebra relations. Can think
of it as expressing the defining algebra relations for A.

Why YBE for R? This is a consistency condition for associativity
of A.
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Undeformed Case: sl,

The universal enveloping algebra (UEA) A = U(sl,) has a
fundamental R-matrix

R12(U) =u-id,2 + P12 : C'"eC'"—-C"'wC",

where, P12 is the flip Pia(x1 ® x2) = x2 ® x1, and a universal
L-operator

n
Lu)=u-id, @1a+ Y e @ Ej,
ij=1
where e is the matrix unit. Here {Ej;} is the Cartan-Weyl basis
for sl

hi = Eii — Eix1,i+1, > ;Ei=0, Eiit1=-¢e, Eit1i="1,
[Eij, Ex] = djx Eir — 0i Ejj.-
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Differential Representation of sl,

slp has an “arbitrary spin” representation; for any m € C we have
a representation on V = C[x] given by

f=-0x, e=x-(Ny+m), h=2N,+m,
where N, = x0x. What does this rep look like?

xm x(m+2)  x(m+4) x(m+2n)

xXm x (m+1) x(m+2)  x(m+n—1) x(m+n)
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Differential Representation of sl,
In general for n-parameters p € C" with >, pi = n(n —1)/2, we
can define a representation on C[x;; | 1 < j < i < n] by

Ej = (ZD(—p) Z M)ji,

where
1 —pn Pa P31 ...  Pp
xa1 1 ) —pn—1 P32 ...  Pm
X31 X32
. . . . —p2 Pn,n—l
Xnl Xp2 -+~ Xn,n—1 1 —p1

where the Pj; are first order linear differential operators:

P = Z Xij - Oki-

k=j+1
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Differential Representation of sl,

Facts about this representation, (we'll call it V,):

> 1 is a lowest weight vector with h;-eigenvalues
m; = ppy1—i — pn—i + 1.
» For “generic’ m;, V, is irreducible.

» It is reducible if some m; € Z<q. It contains a finite
dimensional irreducible subrep iff true for all m;.

» It has a factorised L-operator!

L(u)=ZD(u)Z7' = ,

u = (uj), where u; = u — pj.
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The g-deformed UEA Uy (sl,): For some q = el € C\ {0, +1}

» Generators: e;, f;, and invertible k; = g/ for i = 1,2
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» Relations:

[k,', kj] = 0, k,-ejki_l = qa"f'e-

ki — k!
[elaf_-[] _5uﬁ _5U[h]q’

kifiki * = qf;

lei, &] = [fi, fi] =0, for [i—j|>1,
g’gie1 — (9 + g Heigirig + gie187 =0,

gi = e, f.
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The g-deformed UEA Uy (sl,): For some q = el € C\ {0, +1}
» Generators: e;, f;, and invertible k; = ¢ for i =1,2,...,n—1

» Relations:
[k,‘, kj] = 0, k,-ejki_l = qa"f'ej,
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gi = e, fi. The a;; are components of the A, Cartan matrix.
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g-Deformed Case: U,(sl,)

The g-deformed UEA Uy (sl,): For some q = el € C\ {0, +1}

» Generators: e;, f;, and invertible k; = g/ for i = 1,2

,n—1
» Relations:

[k,‘, kj] = 0, k,-ejki_l = qa"f'e-

ki — k!
[ei ] _5uﬁ = djihilq,

kifiki * = qf;

lei, &] = [fi, fi] =0, for [i—j|>1,

g’gie1 — (9 + g Heigirig + gie187 =0,

gi = e, fi. The a;; are components of the A, Cartan matrix
> Notation: [x]g = (¢* —¢7)/(q—q7")
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and a universal L-operator!
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Now specialise:

M. Jimbo. “A g-analogue of U(gl(N + 1)), Hecke algebra, and the
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g-Deformed Case: U,(sl,)
The g-deformed UEA Uy(sl,) has a fundamental R-matrix
R(u) = ¢"R+q “R™! € End(C" ® C"),
and a universal L-operator!
L(u) = q"LT + ¢ "L~ € End(C") ® Uqy(sl,),

(LT)j o Ejj for j > i.
Now specialise:

Is there an analogous class of representations for Ug(sl,)? How
about a factorised L-operator?

M. Jimbo. “A g-analogue of U(gl(N + 1)), Hecke algebra, and the
Yang-Baxter equation”. In: Lett. Math. Phys. 11 (1986), pp. 247-252.
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sl,: differential representation <> Uq(sl,): “g-difference”
representation: Want a representation on Cx;; | 1 <j < i < n]
» Multiplication operator x;;, number operator V;; as before.
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g-Difference Representation of Ug(sl,)
sl,: differential representation <+ Ugq(sl,): "g-difference”
representation: Want a representation on Cx;; | 1 <j < i < n]
» Multiplication operator x;;, number operator V;; as before.

» g-shift operator g“Ni: q®Nif(x;) = f(q%x;). In general
qa+zj<iaUNij f(X217 s 7Xn,nfl) = Oéf( a21X21a C) qan’n_lxn nfl)
Nl —
» g-difference operator: Djj = % [N,J]q with the

f(gx5)—f(q~ IXIJ)

action Djif(x;) = xij(g—q~1)



Towards a factorised R-matrix with Ug(sl,) Symmetry "
LStep 1: Symmetry Algebras and Representations
Lq-DifFelrence Representation UNIVERSITY OF LEEDS

g-Difference Representation of Ug(sl,)
sl,: differential representation <+ Ugq(sl,): "g-difference”
representation: Want a representation on Cx;; | 1 <j < i < n]
» Multiplication operator x;;, number operator V;; as before.

» g-shift operator g“Ni: q®Nif(x;) = f(q%x;). In general
q0f+2j<,-aijNij f(X217 s 7Xn,n71) = qaf( X1,y qan’n_lxn nfl)
) N’J— N
» g-difference operator: Djj = % [N,J]q with the
f(axi)—f(a xy)

action Djif(x;) =
» n =2 case:

xj(g—q~1)

f=—-Dy, e=x[m+NJ]q, h=2N.+m
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:

g-Difference Representation of Ug(sl,)
sl,: differential representation <+ Ugq(sl,): "g-difference”
representation: Want a representation on Cx;; | 1 <j < i < n]
» Multiplication operator x;;, number operator V;; as before.
» g-shift operator g“Ni: q®Nif(x;) = f(q%x;). In general

i<i ,"N,“ — n,n—
q0f+2]<,041 jf(X217 s 7Xn,n71) - qaf( a21X21a ey qa ’ 1Xn nfl)
Nj_ —Nj
- D= 97-q
» g-difference operator: Dj; = W [N,J]q with the
fax)—f(a~ x;)
action DUf(X’J) W

» n =2 case:

f=—-Dy, e=x[m+NJ]q, h=2N.+m

xm x(m+2) X (m+4) x(m+2n)
0 () oea ()t (LBl xotole (Jetor,
OK_\lK\XK_\XQW\ K\anf\

x[mlg  x[m+1lg  x[m+2ly x[m+n—1]y Xx[m+nly
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2V. K. Dobrev, P. Truini, and L. C. Biedenharn. “Representation theory
approach to the polynomial solutions of g-difference equations: Ug(s[(3)) and
beyond”. In: J. Math. Phys. 35.11 (1994), pp. 6058-6075.
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g-Difference Representation of Ug(sl,)

» For p € C" such that ), pj = n(n —1)/2, there is an
analogous representation V,, of Ug(sl,)?.

2V. K. Dobrev, P. Truini, and L. C. Biedenharn. “Representation theory
approach to the polynomial solutions of g-difference equations: Ug(s[(3)) and
beyond”. In: J. Math. Phys. 35.11 (1994), pp. 6058-6075.
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g-Difference Representation of Ug(sl,)

» For p € C" such that ), pj = n(n —1)/2, there is an
analogous representation V,, of Ug(sl,)?.

» Explicit formula? obtained inductively 4+ not unique!

2V. K. Dobrev, P. Truini, and L. C. Biedenharn. “Representation theory
approach to the polynomial solutions of g-difference equations: Ug(s[(3)) and
beyond”. In: J. Math. Phys. 35.11 (1994), pp. 6058-6075.
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UNIVERSITY OF LEEDS

g-Difference Representation of Ug(sl,)

» For p € C" such that ), pj = n(n —1)/2, there is an
analogous representation V,, of Ug(sl,)?.
» Explicit formula? obtained inductively 4+ not unique!

» An Explicit formula: m; = pp—j — ppr1-i +1

n i1
E,'S' ) - _pn+lfi_z‘;':1 Nij+zjl‘7:i+1(Nji+1),
n =Y NN : J=Llon. N
fi( )= Dy rq>i=1 " N'H’j)—z};l xjDig1 jq k=t Mk Niv1,00

"

Xi+1,i[mi+Ni+1,i+Z}':;+2(Nji—’Vj,i+1)]q+q_""' 2 XiDjir1q

n i—1
S=ip2 (N =Ny ip )+ 525 g (Vi1 = Ni i)

mit2N g1 i1
—q LIS T Xy, Djq

2V. K. Dobrev, P. Truini, and L. C. Biedenharn. “Representation theory
approach to the polynomial solutions of g-difference equations: Uq(s!(3)) and
beyond”. In: J. Math. Phys. 35.11 (1994), pp. 6058-6075.

n
Y= (Nie i1 =Nk, 1)
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Factorised L-operator?
sly: L(u) = ZD(u)Z}

1 un P P31o... Ppm
x1 1 1 Up—1 P3o ... P
X31 X32

uz Pn,nfl

Xpl Xp2 --. Xp,n—1 1 u



Towards a factorised R-matrix with Ug(sl,) Symmetry "
LStep 1: Symmetry Algebras and Representations

Lq-DifFerence Representation UNIVERSITY OF LEEDS
: :
Factorised L-operator?
sl,: L(u) = ZD(u)Z 7!
1 un Pa1 P31 Ppm
x1 1 ) up—1 P32 ...  Pp
7 — X31 X32 ’ D(U) — ’
. y . - uz Pn,nfl
Xnl Xp2 .-+ Xn,n—1 1 u

Uq(slp): Postulate L(u) = Z1(u)D(u) Zo(u) 1R

[Un]qu:l Py Pn1
D(U) = ’ L . )
[UZ]qu"_l Pn,n—l
[u1]qg®™
1
L0
x1q21 1
Pij = —Dyq"i =523 ;.1 xuDyga"* ,  Zi(u) =

O 0

a _
Xp1q 1 ... Xpnp—19q ™" 11
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Factorised L-operator?

3S. Derkachov, D. Karakhanyan, and R. Kirschner. “Yang-Baxter-operators
& parameter permutations”. In: Nucl. Phys. B 785.3 (2007), pp. 263-285.

*P. A. Valinevich et al. "Factorization of the R-matrix for the quantum
algebra Uq(sl3)". In: J. Math. Sci. 151 (2008), pp. 2848-2858.
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Factorised L-operator?

n=2: Yes3

_ 1 0 [ [waleg ™1 —Dxg" 1 0

3S. Derkachov, D. Karakhanyan, and R. Kirschner. “Yang-Baxter-operators
& parameter permutations”. In: Nucl. Phys. B 785.3 (2007), pp. 263-285.

*P. A. Valinevich et al. "Factorization of the R-matrix for the quantum
algebra Uq(sl3)". In: J. Math. Sci. 151 (2008), pp. 2848-2858.
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Factorised L-operator?

n=2: Yes3

_ 1 0 ([ulqg ™" —Dxg" 1 0
(Ul, U2) - (qul—NxX 1) ( 0 [ul]quX —q”2_NXX e

n=3: Yes*, L(u1, up, u3) = Z1DZ; % with

~

[u3lqq™N21TN31 (D1 4x32 D31 gV31 ~M32 1) gNo1 +1 D31qM31
D= 0 (2] gqMN21—N32 Dspqt2—N31+N3
0 0 [u1]qq32 51

1 0 0 1 0 0
Zy = [ g2 MatNaa—Naiyy, 1 0), Z=|(4g92xa 1 0],

g U1 N3t N3 g2 N3 xa, 1 q3lx3; q932x32 1

c1 = u3—Np1, 31 = —uz3—N31 — Noy — 1, c3p = Noy + N31 — Nap.

3S. Derkachov, D. Karakhanyan, and R. Kirschner. “Yang-Baxter-operators
& parameter permutations”. In: Nucl. Phys. B 785.3 (2007), pp. 263-285.

*P. A. Valinevich et al. "Factorization of the R-matrix for the quantum
algebra Uq(sl3)". In: J. Math. Sci. 151 (2008), pp. 2848-2858.
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Factorised L-operator?

n=4: No... Our ansatz reduces to a large system of linear
equations for the g-shift coefficients (182) which can be shown to
be inconsistent.
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Factorised L-operator?

n=4: No... Our ansatz reduces to a large system of linear
equations for the g-shift coefficients (182) which can be shown to
be inconsistent.

“Controlled deformation” breaks: For an example we compute

Eir = [f3, £l ' = — Dapg" =M= M=l — ) Dyy g~ (1 81)

+(q — g 1)x31 D41 D3p g2~ Ns1 71,
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Lq-DifFerence Representation UNIVERSITY OF LEEDS

Factorised L-operator?

n=4: No... Our ansatz reduces to a large system of linear
equations for the g-shift coefficients (182) which can be shown to
be inconsistent.

“Controlled deformation” breaks: For an example we compute

Eq = [f—?n f2]c71 = = D42qN21—N32—N41_1 — X21D41q_(1+N31)

+(q — g 1)x31 D41 D3p g2~ Ns1 71,

A similar term appears in the Ep4 Cartan-Weyl element.
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LStep 1: Symmetry Algebras and Representations
Lq-DifFerence Representation UNIVERSITY OF LEEDS

Factorised L-operator?

n=4: No... Our ansatz reduces to a large system of linear
equations for the g-shift coefficients (182) which can be shown to
be inconsistent.

“Controlled deformation” breaks: For an example we compute
Eiz = [f3, folg" = — Daag" ™2 M1 1 Dy g~ (HH10)
+(q — g ' )x31D41 D3 g™t VoL,
A similar term appears in the Ep4 Cartan-Weyl element.

Such terms cannot arise from our ansatz!
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n=4: A modified factorisation L(u) = Z;(u)D(u)Z(u)~1r
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Lq-DifFerence Representation UNIVERSITY OF LEEDS

Factorised L-operator?

n=4: A modified factorisation L(u) = Z;(u)D(u)Zy(u) 'k

1
1 x21¢°21

x1q721 1 z 1
4 = x31g%31 x32q732 1 — —(g—q71)x31 D32q7321

x41q741 xa2q742 x43q%43 1 x31g31 x30q732 1

X41q741 X42G™42 x43q743 1
1
x21q21 1

x21q°2L 1 30

£ = x31931 x329%2 1 = xaign 3249

-1
X419 x42q%42 x43q43 1 —(q—g7")x21D31g321

X41q“4L Xg2q“42 X43G“43 1
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Factorised L-operator?

n=4: A modified factorisation L(u) = Z;(u)D(u)Zy(u) 'k

1
1 X01q21
x1q%21 1 2 1
4 = x31g%31 x32q732 1 — —(g—q~*)x31D352q%321
x41q741 xa2q742 x43q%43 1 x31g31 x30q732 1
X41q741 X42G™42 x43q743 1
1
x21q21 1
_ x21q°2L 1 Xarq €32
ZH = X311 x32q32 1 =] xagt (g 7?2)?( Dar g€321
X41G41 x42q42 x43q%43 1 q9-q 215319
X41q“4L Xg2q“42 X43G“43 1
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So far

Now we're seeking R(u) = _u|_ € End(V, ® Vy)
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Parameter Permutations and YBE
For R(u) := PoR(u) € End(V, @ Vy)
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Parameter Permutations and YBE
For R(u) := P oR(u) € End(V, ® V) the defining RLL-relation is

R(u = v)Li(u)Lo(v)
= L1(v)Lo(u)R(u — v)’
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Parameter Permutations and YBE
For R(u) := P oR(u) € End(V, ® V) the defining RLL-relation is

R(u— V)Ll(l\l/)Lg(V)
= Li(v)La(u)R(u — v)

~

R realises the permutation (u,v) — (v, u) € Perm(u,v) ~ Sy,.
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UNIVERSITY OF LEEDS

Parameter Permutations and YBE
For R(u) := P oR(u) € End(V, ® V) the defining RLL-relation is

R(u— v)L1(u)L2(v)
= Li(v)L2(u)R(u—v)

~

R realises the permutation (u,v) — (v, u) € Perm(u,v) ~ Sy,.

IDEA: Factorise R(u — v) in terms of elementary transposition
operators S; € End(V, ® Vs )

S,-L12(u, V) = L12(s,-(u, V))S,’, (L12(u, V) = Ll(u)Lg(v))

(S,-(ozl,...ozzn) = (al,...,a;+1,a;,...a2n)) for i = 1,.. .,2n— 1.
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IDEA: Factorise R(u — v) in terms of elementary transposition
operators S; € End(V, ® V)

S,-ng(u, V) = L12(S,'(U, V))S,‘, (L12(u, V) = Ll(U)LQ(V))

(si(aa,...00n) = (Q1,...,qjr1,Q),...app)) for i =1,...,2n— 1.
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IDEA: Factorise R(u — v) in terms of elementary transposition
operators S; € End(V, ® V)

S,-ng(u, V) = L12(S,'(U, V))S,‘, (L12(U, V) = Ll(U)LQ(V))

(si(aa,...00n) = (Q1,...,qjr1,Q),...app)) for i =1,...,2n— 1.
Simplification: Can just find n — 1-“intertwining” operators
Ti € End(V,):

Ti(u)L1(u) = Li(siu)Ti(u),
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Parameter Permutations and YBE

IDEA: Factorise R(u — v) in terms of elementary transposition
operators S; € End(V, ® V)

S,-ng(u, V) = L12(s,-(u, V))S,', (L12(u, V) = Ll(U)LQ(V))

(si(aa,...00n) = (Q1,...,qjr1,Q),...app)) for i =1,...,2n— 1.

Simplification: Can just find n — 1-“intertwining” operators
Ti € End(V,):
Ti(u)L1(u) = Li(siu)Ti(u),

and a single “exchange” operator:

S,,(u, V)L12(U, V) = S,,(u, v)L12(u1, oo, Up_1, 1, Up, VO, Vn).
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elementary transpositions gives two candidates for R.
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1. Two different decompositions of (u, v) — (v, u) into
elementary transpositions gives two candidates for R.
2. YBE for R:
7?12(V—W)7é23(u—w)7\é12(u—v) = 7?,23(u—V)7V—\’,12(U—W)7‘é,23(v—w).
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LStep 2: Parameter Permutations and YBE

UNIVERSITY OF LEEDS

Problems

1. Two different decompositions of (u, v) — (v, u) into
elementary transpositions gives two candidates for .
2. YBE for R:

7v212(v—w)7v223(u—w)7v€12(u—v) = 7?,23(u—V)7V—\’,12(U—W)7V—\’,23(V—W).

These will both be answered provided we can prove these operators
define an action of Sy, that is,

Sic+ -+ SipSiy = Sir(Sii_y -+ - sy (U, v)) .. Sip(siy(u, v)) Siy(u, v),

respects the group relations.



Towards a factorised R-matrix with Ug(sl,) Symmetry
LStep 2: Parameter Permutations and YBE ﬁ

UNIVERSITY OF LEEDS

Problems

1. Two different decompositions of (u, v) — (v, u) into
elementary transpositions gives two candidates for K.
2. YBE for R:
7v212(v—w)7v223(u—w)7v€12(u—v) = 7v?,23(u—V)7v—\’,12(u—W)7v223(V—W).

These will both be answered provided we can prove these operators
define an action of Sy, that is,

S,'J. ... S5pp,Si = S,'J.(S,'j_1 . s,-l(u, V)) A 8;2(5,'1(u, v))S,-l(u, V),

respects the group relations.
YBE then follows from equivalence of the decompositions

23

(u,v, W)I%(V, u, w)lﬁ(v, w, u)I%(w, v, u),
(u, v, w) "2 (u, w, v) B R

(w,u,v) == (w, v, u).



Towards a factorised R-matrix with Ug(sl,) Symmetry "
LStep 2: Parameter Permutations and YBE
LUndeformed Permutation Operators UNIVERSITY OF LEEDS

Undeformed Case

®S. Derkachov and A. N. Manashov. “R-Matrix and Baxter Q-Operators
for the Noncompact SL(N, C) Invariant Spin Chain”. In: SIGMA (Dec. 2006).
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®S. Derkachov and A. N. Manashov. “R-Matrix and Baxter Q-Operators
for the Noncompact SL(N, C) Invariant Spin Chain”. In: SIGMA (Dec. 2006).
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LUndeformed Permutation Operators UNIVERSITY OF LEEDS

Undeformed Case

Treated in®.

» Intertwining Operators: up to a change of variables

Tiui — ujg1) = (=) i),

®S. Derkachov and A. N. Manashov. “R-Matrix and Baxter Q-Operators
for the Noncompact SL(N, C) Invariant Spin Chain”. In: SIGMA (Dec. 2006).
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LUndeformed Permutation Operators UNIVERSITY OF LEEDS

Undeformed Case

Treated in®.

» Intertwining Operators: up to a change of variables

Tilui — uip1) = (=9¢) ).

» Exchange Operator: A multiplication operator
Sn(un - Vl) = (F(X7 .y))(un_Vl)a

where F(x,y) is a polynomial in y;; and (xj1 — yj1).

®S. Derkachov and A. N. Manashov. “R-Matrix and Baxter Q-Operators
for the Noncompact SL(N, C) Invariant Spin Chain”. In: SIGMA (Dec. 2006).
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LUndeformed Permutation Operators UNIVERSITY OF LEEDS

Undeformed Case

Treated in®.

» Intertwining Operators: up to a change of variables

Tilui — uip1) = (=9¢) ).

» Exchange Operator: A multiplication operator
Sn(un - Vl) = (F(X7 .y))(un_Vl)a

where F(x,y) is a polynomial in y;; and (xj1 — yj1).

» Symmetric Group Relations: Star-Triangle integral identities.

®S. Derkachov and A. N. Manashov. “R-Matrix and Baxter Q-Operators
for the Noncompact SL(N, C) Invariant Spin Chain”. In: SIGMA (Dec. 2006).
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g-Deformed Case

Proposition
The intertwiners for the Uqy(sl,) L-operator are given by

—i

T@) = (M) e (q M IX0D)
n—i n—i ep (qz(Ni+1,i+1*a)x’E’l)l_) ’

_ . -1
e2(Z2)=((Z:4%)) T = [(1 - Z)(1 - 4°Z)(1 - ¢°%2)...] 7,
2(2) oo (07%19); 5
eq2zq‘°‘2) - ZJ'=0 (q;q)szj’
mi = (xi+1,)q%, and
Xo0 = L x1i i B = g ) (lgl< 1)

where o = Up—j — Upy1—j, A

®P. A. Valinevich et al. “Factorization of the R-matrix for the quantum
algebra Uq(sl3)". In: J. Math. Sci. 151 (2008), pp. 2848-2858.



Towards a factorised R-matrix with Ug(sl,) Symmetry
[

LStep 2: Parameter Permutations and YBE
Lq-deformed Permutation Operators UNIVERSITY OF LEEDS

g-Deformed Case

Proposition
The intertwiners for the Uqy(sl,) L-operator are given by

(n) _ (n) «a eq2 (qZ(NI+1'i+1)X,(,Z)[)
7;—[(&) - </\n—/> eq2 (q2(N,'+17,'+17a)x,E,l)i)7
_ . 1
#(2) = (Z:g)w) " = [1-2)1 - 2)1 - *2)..] .

e2(Z) oo (a7%9) )
eq2zq“’2) - ZJ'=0 (q:q)JJ Z,

where o = up_j — Upt1-j, /\f,"_),- = (xis1,i)q"%, and
Xo0 = L x1i i A = g ) (lgl< 1)

There formulae are obtained using an approach from®°.

®P. A. Valinevich et al. “Factorization of the R-matrix for the quantum
algebra Uq(sl3)". In: J. Math. Sci. 151 (2008), pp. 2848-2858.
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g-Deformed Case

Proposition
The intertwiners for the Uq(sl,) L-operator, Ti(c), define an
action of the symmetric group Perm(u) ~ S,,.

Proof.

The only non-trivial relation is the braid relation
Ti(e)Tiva(a + B)Ti(B) = Tiza(B)Tila + B)Tita(e).

After a series expansion it is reduced to a family of (terminating)
g-series identity relating rank / + 1 and rank 2/ — 1 g-Lauricella
series. O
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g-Series ldentity

For n > 1 and non-negative integer tuples

k= (ko kn) = (ko, k), 1= (h,..., 1), m=(my,....,my_1),
with K'=>"7 ; kj and L, M. Define n-tuples r = (r;) and p = (p;)
=14 (ke = (lh+ma)), pi=1-35 (k—(lr+ma)).

The identity we need is the equality Ok | m = Qg 1.m

@k,l,m = (égé_qs)Lz—Aj\,/l (D(L?nil) [ Gqlgm ;qlfoM/g; qr+l+(m,0)7q(r,-,fn)+m ]’
, +
Qppm = ¢ ((;C, 'qc;;(K O D¢ g gt K e gt K /(e 0). 0t ],

for arbitrary complex parameters &, (.
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Exchange Operator
The defining relation for the exchange operator S, is
SnLl(U)LQ(V) = Ll(ul, lj, V1)L2(Un, |7, Vn)Sn.

Recall the (postulated) factorisation for L(u). This can be put into
the form:
Li(u) = Zi(u1, @)D(d)Z2(d, u,) 7.

Now we can reduce the defining relation to
DX ()7L S, D(X>(a)] Z9 (i, up) %20 (1, )

= Z{(, 1) 2 (uy, 1) | DV (7) S, DV (@) 5]

if SUY) commutes (element wise) with Z\*) and Z{*).
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Exchange Operator

This has been used to construct exchange operators in the
undeformed case, and n = 2, 3 cases.

Recall in the n = 4 case the postulated ansatz for factorisation was
inconsistent!

This seems to represent a serious obstruction to constructing the
exchange operator... So far hasn't been obtained in the n = 4 case
(or general).
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Summary

» We introduced the RLL-method as a means for obtaining
solutions to the YBE in the class of differential (g-difference)
representations of sl,. A key feature here is a factorisation
property of the L-operators.

» We explain how the R-matrix can be interpretted as
performing a permutation of the parameters u; of the
L-operator, allowing for its factorisation by transposition
operators.

» We described explicitly all but one of the transposition
operators in the Ug(sl,) case, and prove they obey the
necessary symmetric group relations.

» We explain how the failure of the factorisation property for
the Uq(sls) L-operator represents an obstruction to
constructing the missing “exchange” operator.
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Questions?
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