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Abstract

This report presents the notion of thin position for three manifolds as developed in [4]. We begin
with a discussion of a more general notion of width and thin position in manifold topology based on [3]
before studying the specific case of thin position for three manifolds in §2. §3 examines a simple corollary
of this theory relating Heegaard genus and incompressible surfaces to the width of a 3-manifold.

1 Introduction

The notion of thin position for knots was pioneered by Gabai in [2]. This lead to Scharlemann and Thompsons
work in developing a notion of thin position for 3-manifolds in their paper [4] which will be the main focus
of this report. At first glance the analogy between these two constructions may seem obscure, however, [3]
details how they may both be considered two examples of a more general notion of thin position. In this
report we take the viewpoint that the added clarity from discussing this generalisation is both interesting
and useful. To that end, the rest of this introduction will be dedicated to defining the general concept of thin
position, while §2 deals with thin position for 3-manifolds and §3 discusses a simple consequences thereof.

To define the generalised notion of thin position we start with a pair of manifolds (N,M) with N ⊂M .
Denote by M the set of morse functions on the pair (N,M), that is, morse functions h : M → R such that
h|N is also a morse function. We may further require a constraint C to be imposed on M and if so take
C = {h ∈ M : h satisfies C}. Then for h ∈ C let c0, . . . cn denote the critical points of either h|N or h|M
arranged in ascending order, and choose some ri ∈ R with ci−1 < ri < ci for i = 1, . . . , n. We now require
a function g : L → R where L = {(h|−1N (r), h|−1M (r)) : h ∈ C, r non-critical} is the set of ordered pairs of so
called level sets of h ∈ C. Then for a given h ∈ C with the ri ∈ R as above we define the n-tuple

(g(h|−1N (r1), h|−1M (r1)), g(h|−1N (r2), h|−1M (r2)), . . . , g(h|−1N (rn), h|−1M (rn))) ∈ Rn ⊂ R∞, (1.1)

where a real valued n-tuple is viewed as an element of R∞ with all but the first n entries set to 0. To
complete the notion of thin position we want to be able to compare the above n-tuples as we vary h. This
is done via a function f : R∞ → O where O is a well ordered set. Then the width of N with respect to h is
defined as

wh(N) = f(g(h|−1N (r1), h|−1M (r1)), g(h|−1N (r2), h|−1M (r2)), . . . , g(h|−1N (rn), h|−1M (rn))). (1.2)

The width of N is w(N) = minh∈C{wh(N)}, and N is said to be in thin position if it is presented with a
morse function h for which wh(N) = w(N).

The intuition behind this construction is that g measures the “complexity” of a pair of level sets
(h|−1N (ri), h|−1M (ri)) in some sense, and that f measures the complexity of the collection of level sets
{(h|−1N (ri), h|−1M (ri)) : i = 1, . . . n}. Thin positions give a way to present N which minimises this com-
plexity. That we had a useful notion of complexity requires a posteriori justification but if this is the case
then presenting N in thin position should be optimal in some sense. For example the notion of thin position
for knots was developed and used by Gabai to prove property R for knots. This is beyond the scope of this
report, however, we will briefly define thin position for knots.

To define thin position for knots we take (N,M) = (K,S3) for K ⊂ S3 a knot. We restrict to morse
functions for which h|S3 has exactly two critical points c0 < cn, which are necessarily the global minimum
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and maximum respectively. Then if c1, . . . cn−1 are the critical points of h|K and ri ∈ R are chosen so that
ci−1 < ri < ci, the complexity of the pair (h|−1K (ri), h|−1S3 (ri)) is given by g(h|−1K (ri), h|−1S3 (ri)) = χ(h|−1K (ri)) =

|K ∩ h|−1S3 (ri)| ∈ N. The width of K, wh(K), is then given by applying f : R∞ → R, defined by summing all
(non-zero) entries, as per (1.2).

2 Thin Position for 3-manifolds

To define thin position for three manifolds we take (N,M) = (M,M) and just identify this with the three
manifold M (for simplicity we will restrict to closed, connected, orientable three manifolds). We restrict to
morse functions on M for which the index 0 (3) critical points are situated below (above) all index 1 and 2
critical points. For such a morse function h on M with critical points in ascending order c0, c1, . . . , cn and
values ri ∈ (ci−1, ci) the complexity of the level set h−1(ri)

1 is defined to be

g(h−1(ri)) = Ci + si − χ(h−1(ri)) ∈ N, (2.1)

where Ci is the number of connected components of h−1(ri) and si is the number of S2 components. Since
euler characteristic is additive and since χ(S2) = 2, the above definition for complexity of a surface agrees
with that given in [4] which takes complexity of a connected surface S to be 1−χ(S) or 2g− 1 for S 6= S2 a
genus g surface and 0 for S = S2 and then extends this additively. Finally, the width of M with respect to
h is wh(M) := f(g(h−1(r1)), . . . , g(h−1(rN ))), where f : N∞ → N∞ is the function which takes an m-tuple
(x1, . . . , xm), deletes an entry xi if either xi−1 > xi or xi+1 > xi, and then arranges the remaining entries in
non-increasing order. After this process the resulting k-tuples are then ordered lexicographically.

When dealing with specific examples of thin position, the above formalism leads to obfuscation. Let us
now intepret thin position for three manifolds in a more natural way. We have seen that a morse function h
on M details how we may build M by repeatedly gluing handles together. By grouping together handles of
the same index a morse function of the type specified above decribes a manifold with a decomposition

M = b0 ∪N1 ∪ T1 ∪N2 ∪ T2 ∪ · · · ∪NN ∪ TN ∪ b3, (2.2)

where b0 is a collection of 0-handles, Ni is a collection of 1-handles, Ti is a collection of 2-handles, b3 is a
collection of 3-handles, and only N1 and TN may be empty. The level set h−1(ri) is the resultant boundary
after adding the first i handles. Let us now make some observations about how the complexity (2.1) interacts
with surgery on a surface.

Suppose that S = ∂N , is a closed orientable surface that is the boundary of some three manifold N .
Now suppose that S′ = ∂(N ∪ (i − handle)). If i is 0 or 3 then S′ differs from S only in the number of S2

components, so g(S) = g(S′). If i = 1 then g(S′) ≥ g(S) since adding a 1-handle lowers χ by 2. Equality is
achieved precisely when a 1-handle joins two separate components of S one of which being an S2 so that we
lower the number of components and sphere components by 1. Anything short of this results in the strict
inequality g(S′) > g(S). Dually, we see that if i = 2 then g(S′) ≤ g(S) since adding a 2 handle raises χ by
2. Equality is achieved precisely when the 2-handle is glued onto an inessential curve raising the number
of components and sphere components by 1. Gluing a 2-handle onto an essential curve will give the strict
inequality g(S′) < g(S).

Using this let us now analyse the sequence

g(h−1(r1)), g(h−1(r2)), . . . , g(h−1(rn)). (2.3)

The first few level sets are the surfaces after adding only one handles, which are simply a disjoint union of
spheres with complexity 0. The sequence of complexity then increases (non-strictly) as we add the 1-handles
in N1, and decreases (again non-strictly) as we add the 2-handles in T1 and so on until we have added all the
two handles in TN . After adding all 2-handles in TN the manifold is completed by capping off the remaining
S2 boundary components with 3-handles, so what remains of the sequence of complexities is identically 0.
Since entries of 0 are irrelevant in the lexicographical ordering on N∞, we need only concern ourselves with
what occurs when adding 1 and 2 handles matching our intuition that this is the only non-trivial part of the
decomposition (2.2).

1Since N = M we need not consider a pair of level sets now.
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Now let us consider f applied to (2.3). We note that f selects the local maxima of this sequence,
i.e. g(h−1(ri)) satisfying g(h−1(ri−1)) ≤ g(h−1(ri)) ≥ g(h−1(ri+1)). Local maxima must occur between
(non-strict) increasing and decreasing sections of the sequence of complexities, which as we saw almost
correspond to collections Ni of 1-handles and Ti of 2-handles. Thus the level sets selected by f are the
surfaces separating the collection Ni of 1-handles from the collection Ti of 2-handles as well as possibly some
other surfaces resulting from 1-handles or 2-handles attached which fixed the complexity.

2.1 Scharlemann & Thompson’s description

In this subsection we present the description of thin position for 3-manifolds as in [4] and verify that it is
consistent with the previous description. We start with a three manifold M with a decomposition as per
(2.2) resultant from some morse function h. Now construct the two following families of surfaces

Si := ∂(b0 ∪N1 ∪ T1 ∪ · · · ∪ Ti−1 ∪Ni) \ {S2 component bounding a 0 or 3 handle}, (2.4)

Fi := ∂(b0 ∪N1 ∪ T1 ∪ · · · ∪Ni ∪ Ti) \ {S2 component bounding a 0 or 3 handle}. (2.5)

Morse theoretically, we can view the surface Si (Fi) as the level set at some value ti (qi) chosen so that it
is situated between the collections Ni and Ti (Ti and Ni+1). The condition that we remove S2 components
bounding 0 or 3 handles is simply saying that viewing the morse function as a height function, we squish
minima (maxima) as far upward (donward) as they can go. This is depicted schematically below.

Figure 1: Schematic diagram for the decomposition (2.2), showing the squishing of a minima and maxima.
Dashed lines represent the collection of 0 and 3 handles.

Our manifold M can then be written as the union of layers M = ∪Ni=1Wi where Wi = h−1[qi−1, qi] where
q0, qN ∈ R are such that h(M) ⊂ (q0, qN ). Morse theory now informs us that each layer is of the form

Wi = (Fi−1 × I) ∪Ni ∪ Ti ∪ {0 or 3 handles incident to Ni or Ti}. (2.6)

The surface Si = h−1(ti) ⊂Wi separates the layer Wi as Wi = h−1[qi−1, ti]∪Si
h−1[ti, qi] := N i ∪ T i. Again

we can use morse theory to deduce that N i is of the form N i = (Fi−1× I)∪Ni∪{0-handles incident to Ni}.
Such an N i is a very specific type of manifold; it is a cobordism between Fi−1 and Si obtained from (Fi−1×I)
by gluing 1 and 0-handles to Fi−1×{1} where Fi−1 ' Fi−1×{0} and Si ' ∂N i \Fi−1×{0}. This is type of
generalised handlebody known as a compression body. Dually, T i = (Si×I)∪Ti∪{3-handles incident to Ti}
is also a compression body, so in fact we may say that Si ⊂Wi determines a Heegaard splitting of the layer
Wi into compression bodies.

The width of a decomposition is then defined in [4] to be theN -tupleWh(M) := (g(S1), g(S2), . . . , g(SN )) ∈
NN ⊂ N∞ where the complexity g is as per 2.1, and tuples are ordered by arranging in non-increasing order
and comparing lexicographically. Notice that for a given h, Wh(M) does not necessarily agree with the
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width wh(M) from the previous section since the latter may contain (the complexity of) strictly more sur-
faces. However, this is remedied when we optimise over all morse functions h. The extra surfaces included
in wh(M) arise from 1 or 2 handles attached at some step that fix the complexity of the surface they are
attached to. We have already described precisely when this occurs. Suppose that h is a morse function
with a 2-handle attached to an essential curve at any step. If it is not already, then we may promote this
attachment to the “front of the queue” since we can always shrink the essential curve to be an ε neighbour-
hood of some point and move this point as necessary to realise this 2-handle attachment disjointly from all
other previously attached 1 and 2-handles. Dually, any 1-handle attachment which joins an S2 component
to any other component S can be demoted to the back of the queue by simply handlesliding any subsequent
1 or 2 handle attachments off of the S2 ∪ (1-handle), realising this attachment disjointly from the remaining
attachments.

Repeating this process results in a Morse function h′ where all the 1-handle (2-handle) attachments that
fix complexity occur after (before) all other 1 and 2 handle attachments such that the intermediate surfaces,
Si and Fi, are the same as in h2. The N -tuple of complexities for h′ differs from that of h by an additional
collection of 0s at the start and end (due to the moved 2 and 1 handles respectively) and that we now have
strictly increasing/decreasing sections corresponing to the collection of 1 and 2-handles. Therefore, the only
non-zero elements selected by f are exactly the complexities of the surfaces Si separating collections Ni and
Ti, in other words w′h(M) = Wh(M). This combined with the inequality wh(M) ≥ Wh(M) for all Morse
functions h implies that minimising over both results in the same width w(M) for M . In light of this we
restrict to morse functions of the same type as h′ since this subset of functions always achieves the minimal
width. Let us call a decomposition as per figure 1 with Wh(M) = w(M) a thin decomposition.

2.2 Properties of thin decompositions

In this subsection we will prove 6 propositions for a three manifold M presented in thin position, following
[4] closely. First we briefly set up some terminology.

Let S be a (closed, orientable) surface and M be a (closed, connected, orientable) 3-manifold. A sphere
S2 ⊂ M is essential if it does not bounds a 3-ball in M . M is irreducible if it contains no essential S2.
Suppose S ⊂M . An essential disc in (M,S) is a disc D2 ↪→M with D ∩ S = ∂D such that ∂D is essential
in S. We say S is incompressible in M if no such disk exists and otherwise we say S is compressible in M .
M is Haken if it is irreducible and contains an incompressible surface.

Let N be an orientable 3-manifold. A Heegaard splitting of N = N1 ∪S N2 into compression bodies Ni

is weakly reducible if there exist essential discs ∂Di for (Ni, S) such that ∂D1 ∩ ∂D2 = ∅ ⊂ S. A Heegaard
splitting which is not weakly reducible is strongly irreducible.

Before beginning the proofs we signpost a common technique; we “thin” a given decomposition by altering
it, giving a new decomposition with lesser width.

Proposition 1: In a thin decomposition for M , any S2 component of any Fi is essential in M .

Proof: Suppose that S ⊂ Fi is an inessential sphere. Then either h−1[qi,∞), h−1(−∞, qi] contains a 3-ball
component B with ∂B = S. Replace B with a 3-handle in the first case and a 0-handle in the second. B
must have consisted of a non-empty collection of both 1 and 2 handles so doing this lowers the complexity
of at least one intermediate surface Sj , decreasing wh(M). �

Proposition 2: In a thin decomposition for M , each component from Fi−1 either persists into Fi or has
handles from both Ni and Ti attached to it in Wi.

Proof: First suppose that some component F ⊂ Fi−1 has only 2-handles in Ti attached to it. Since these
attachments could not have depended on any 1-handle attachments in Ni we can simply regard these 2-
handles as being part of Ti−1. This only changes the surface Si, and it changes it precisely by 2-surgery
on essential curves, thus decreasing the width wh(M). Dually, if we had only attached 1-handles to F we
could regard these as being part of the subsequent collection of 1-handles Ni+1 changing only Si by removing
1-handles thus decreasing the width. �

Proposition 3: In a thin decomposition for M , each Wi is strongly irreducible.

2This process may require adding an additional empty collection of 1-handles at the start or 2-handles at the end
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Proof: Suppose for a contradiction that the Heegaard splitting Wi = N i∪T i is weakly reducible and let DN

(DT ) be an essential disc for N i (T i). We can then replace the layer Wi with two layers W±i = N
±
i ∪ T

±
i ,

where N
−
i = N i \ (DN × I), and T

−
i is obtained by gluing a 2-handle with core DT onto N

−
i . Then

N
+

i obtained from T
−
i by gluing a 1-handle with co-core DN and T

+

i is obtained from N
+

i by adding the
remainder of the two handles in Ti. This replaces the layer Wi with the composite layer W−i ∪W

+
i each

with Heegaard surfaces S±i obtained from Si by either compression along or two surgery on an essential disc
giving g(S±i ) < g(Si), thus lowering the width wh(M). �

An immediate consequence of proposition 3 is the following.

Proposition 4: In a thin decomposition for M , all 1-handles in Ni and 2-handles in Ti are incident to the
same component Si. We call such a component the active component of Si.

Proof: If this fails then the Heegaard splitting for Wi is weakly irreducible. �

The next proposition relies on Theorem 2.1 from [1], the converse of which says that if ∂Wi = Fi−1 ∪ Fi is
compressible in Wi then any Heegard splitting for Wi is weakly reducible.

Proposition 5: In a thin decomposition for M , every component of Fi is incompressible in M .

Proof: Suppose that S ⊂ Fi is a compressible (in M) component and let D ⊂ M be an essential disc for
S. Now let F = ∪Ni=1Fi, and by restricting to an innermost disc of D ∩ F if necessary, we may assume that
D is contained entirely within either Wi or Wi+1. In either case we obtain that ∂Wj is compressible in Wj

for some j which by the aforementioned theorem implies that Wj must have a weakly reducible Heegaard
splitting contradicting Proposition 3. �

Our final proposition is the following.

Proposition 6: Suppose M is irreducible and not a Lens space, then in a thin decomposition no component
of any Si is a torus.

Proof: Pick a thin decomposition of M and suppose that T is a torus component of some Si. Without loss
of generality we may assume that T is the active component of Si. Now let W be the component of Wi

containing T and by assumption on the form of the morse function h we have that g(∂W ) < g(T ) = 1 giving
g(∂W ) = 0 so ∂W ⊂ Fi ∪ Fi−1 is a disjoint union of 2-spheres. Since these spheres would be essential in
M by proposition 1, we must have ∂W = ∅ as not to contradict irreducibility of M . Therefore, W = M as
connected, orientable, closed submanifold of M . The surface T ⊂ W determines a Heegaard splitting of M
into solid torii which must be strongly irreducible by proposition 3, so M was a Lens space. �

3 A simple corollary

In this section we prove a simple corollary which relates Heegaard genus and incompressible surfaces to the
width of a 3-manifold M .

Corollary: Suppose that M is an irreducible manifold of Heegaard genus g. Furthermore, suppose M
contains no incompressible surfaces of genus < g. Then a minimal genus Heegaard splitting for M is a thin
decomposition giving w(M) = {2g − 1}.

Proof: Suppose for a contradiction that w(M) < {2g − 1}. Then in a thin decomposition for M , every
surface Si has g(Si) < 2g−1. If all Fi were empty then this thin decomposition would be a Heegaard splitting
of genus < g which is impossible. Combining non-emptiness of Fi with irreducibility of M we obtain that
0 < g(Fi) ≤ Si < 2g− 1 as Fi is obtained from Si by 2-surgery. Thus each Fi has a component of genus < g
which must be incompressible in M contradicting our assumption on M . �

In the following example this corollary is applied in contrapositive form.

Example: Let M = S1×S1×S1 be the 3-torus. Then M is irreducible and has Heegaard genus 3. We saw
in class that M has a weakly reducible minimal genus Heegard splitting, which combined with proposition
3 implies that w(M) < {2g− 1 = 5}. Thus we conclude that M contains an incompressible surface of genus
< 3. In fact this result generalises; if M = S1 × S is irreducible for S 6= S2 a closed, connected orientable
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surface then from proposition 3.1 of [5] we obtain that a minimal genus Heegard splitting (say genus g)
for M is weakly reducible. Thus we have w(M) < {2g − 1} and the corollary tells us that M contains an
incompressible surface of genus < g.
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